首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of microcapsules filled with epoxy resins with poly(urea-formaldehyde) (PUF) shell were synthesized by in situ polymerization, and they were heat-treated for 2 h at 100 °C, 120 °C, 140 °C, 160 °C, 180 °C and 200 °C. The effects of surface morphology, wall shell thickness and diameter on the thermal stability of microcapsules were investigated. The chemical structure and surface morphology of microcapsules were investigated using Fourier-transform infrared spectroscope (FTIR) and scanning electron microscope (SEM), respectively. The thermal properties of microcapsules were investigated by thermogravimetric analysis (TGA and DTA) and by differential scanning calorimetry (DSC). The thermal damage mechanisms of microcapsules at lower temperature (<251 °C) are the diffusion of the core material out of the wall shell or the breakage of the wall shell owing to the mismatch of the thermal expansion of core and shell materials of microcapsules. The thermal damage mechanisms of microcapsules at higher temperature (>251 °C) are the decomposition of shell material and core materials. Increasing the wall shell thickness and surface compactness can enhance significantly the weight loss temperatures (Td) of microcapsules. The microcapsules with mean wall shell thickness of 30 ± 5 μm and smoother surface exhibit higher thermal stability and can maintain quite intact up to approximately 180 °C.  相似文献   

2.
Through temperature-programmed pyrolysis, the physicochemical properties of Pteria martensii (PM) before and after calcination are investigated. Our results show that the mass loss is 11.02% from room temperature to 600 °C with an average mass loss rate of 0.19% per min. The decomposition of organics coupling with the phase transition of calcium carbonate from aragonite to calcite occurs in the range of 367.4–423.0 °C, as confirmed by X-ray diffraction and Fourier transform infrared spectroscopy analyses. The decomposition pores and channels are changed forming complex porous structures. The surface of sample shows a much rougher fracture, with higher C, O and N element concentrations. At the stage of decomposition and phase transition of organics, the average activation energy value is 118.78 kJ mol?1. This study provides valuable information on the calcination process and calcined PM for use in medicines.  相似文献   

3.
4.
Three pentanuclear lanthanoid hydroxo clusters of composition [Ln(OH)(5)(abzm)(10)], where Ln = Eu, Tb, Ho and abzm = di(4-allyloxy)benzoylmethanide, have been prepared. The structures have been characterised by means of IR, Raman, elemental analyses and X-ray diffraction, showing a pyramidal square-based cluster core. The clusters (Tb and Ho) exhibit Curie-Weiss Law behaviour, displaying antiferromagnetic ordering at low temperatures. The emission properties of the Eu cluster demonstrate the abzm(-) ligand is an efficient antenna (λ(ex) = 420 nm) only for the sensitisation of Eu luminescence in the visible range, via energy transfer to the (5)D(0) state of the trivalent metal. The clusters have been reacted in the presence of methyl methacrylate and azobisisobutyronitrile to prepare reinforced polymers via radical polymerisation. The obtained materials exhibit swelling upon immersion into organic solvents up to ≈ 110% of their original size, in agreement with the presence of cluster-crosslinked polymeric chains. Also, no loss of transparency was observed in the preparation of the materials. The characteristic red emission of the Eu cluster in also retained in the polymeric material.  相似文献   

5.
This review highlights how the combination of supramolecular principles and nanoscopic solid structures enables the design of new hybrid sensing ensembles with improved sensitivity and/or selectivity and for the targeting of analytes for which selectivity is hard to achieve by conventional methods. Such ideas are bridging the gap between molecules, materials sciences and nanotechnology. Relevant examples will be detailed, taking into account functional aspects such as (1) enhanced coordination of functionalized solids, (2) enhanced signalling through preorganization, (3) signalling by assembly–disassembly of nanoscopic objects, (4) biomimetic probes utilizing discrimination by polarity and size and (5) distinct switching and gating protocols. These strategies are opening new prospects for sensor research and signalling paradigms at the frontier between nanotechnology, smart materials and supramolecular chemistry.  相似文献   

6.
A study was made of the thermal stability of epoxy compounds which were unfilled or contained metallic fillers such as aluminium dust, aluminium flakes, powdered bronze, powdered brass and silver flakes. The properties of the compounds were modified by the use of various hardeners.
Zusammenfassung Es wurde die thermische StabilitÄt ungefüllter und gefüllter Epoxidkompositionen untersucht. Als metallische Füllstoffe wurden Aluminiumpulver und -flocken, Messing- und Bronzpulver sowie Silberflocken eingesetzt. Die Eigenschaften dieser Kompositionen wurden mit verschiedenen HÄrtern modifiziert.

, , , . .
  相似文献   

7.
Poly(monoitaconates) containing octyl, decyl and dodecyl groups and random monoalkylitaconate-co-vinylpyrrolidone copolymers were studied by thermogravimetric analysis. Copolymers of mono-n-octylitaconate (MOI), mono-n-decylitaconate (MDI), and mono-n-dodecylitaconate (MDoI), respectively, with N-vinyl-2-pyrrolidone (VP) of different compositions were studied by dynamic thermogravimetric analysis. The thermal stability of the copolymers depends on the structure of the monoitaconate comonomer and on the composition of the copolymer The kinetic analysis of the degradation data shows that the thermal decomposition of these copolymers can be described by several kinetic orders depending on the copolymer and on the composition. The relative thermal stability of the copolymers increases as the VP content increases and as the length of the side chain of the itaconate increases, following the same trend as the flexibility of the copolymers in solution.  相似文献   

8.
General purpose poly(styrene) prepared by conventional radical techniques contains a head-to-head unit as a consequence of polymerization termination by radical coupling. As has been previously demonstrated, thermal stress promotes homolysis of the bond linking the head-to-head components. The macroradicals generated depolymerize rapidly to generate styrene monomer. This decomposition during processing can lead to finished articles containing objectionable levels of styrene monomer, particularly for food packaging applications in which even low levels of monomer can promote objectionable taste and aroma. Polymer containing no head-to-head units should not be prone to this facile decomposition. In this instance, poly(styrene) has been prepared by nitroxyl-mediated polymerization of styrene monomer followed by reductive removal of nitroxyl end groups. Polymer prepared in this manner contains no head-to-head units and displays thermal stability much greater than that observed for conventional poly(styrene). A direct comparison of the stability for the two polymers is readily available by thermogravimetric techniques. A quantitative reflection of the difference in stability is available from the rate constants for the respective decomposition.  相似文献   

9.
In order to produce silica/polyelectrolyte hybrid materials the adsorption of the polyelectrolyte poly(vinyl formamide-co-vinyl amine), P(VFA-co-VAm) was investigated. The adsorption of the P(VFA-co-VAm) from an aqueous solution onto silica surface is strongly influenced by the pH value and ionic strength of the aqueous solution, as well as the concentration of polyelectrolyte. The adsorption of the positively charged P(VFA-co-VAm) molecules on the negatively charged silica particles offers a way to control the surface charge properties of the formed hybrid material. Changes in surface charges during the polyelectrolyte adsorption were studied by potentiometric titration and electrokinetic measurements. X-ray photoelectron spectroscopy (XPS) was employed to obtain information about the amount of the adsorbed polyelectrolyte and its chemical structure. The stability of the adsorbed P(VFA-co-VAm) was investigated by extraction experiments and streaming potential measurements. It was shown, that polyelectrolyte layer is instable in an acidic environment. At a low pH value a high number of amino groups are protonated that increases the solubility of the polyelectrolyte chains. The solvatation process is able to overcompensate the attractive electrostatic forces fixing the polyelectrolyte molecules on the substrate material surface. Hence, the polyelectrolyte layer partially undergoes dissolving process.  相似文献   

10.
The method of solvation model has been applied to five poly (methyl-trifluoropropyl) siloxanes (TFPSXX) prepared in our laboratories, at five trifluoropropyl (TFP) group contents, XX = 0, 11.5, 26.3, 35.5 and 50.0%, at 80, 100, 120 and 140 degrees C. Previously, specific retention volumes of 60-odd solutes of varied polarities were measured upon each of these stationary phases within the above temperature range. Constant s prevails over all other constants, TFPSXX stationary phases showing strong dipole/induced dipole forces with the solutes, moderate acidity and no basicity at all. Constant e is zero in the stationary phase without TFP groups, but has negative low-medium values for the other fluorine contents, XX from 11.5 to 50.0%, hinting at repulsive forces, as expected. Normal values for constant l, decreasing from the less cohesive TFPS00 to the more cohesive TFPS50, were found. For each TFP content constants s, a and l show a negative temperature dependence, while constant e increases as temperature increases. Constant c also decreases with increasing temperature. At each temperature, constants s and a increase with increasing %TFP (or increasing stationary phase polarity), whereas constants e and l show the opposite trend, diminishing with increasing polarity of the stationary phase. Principal component analysis shows that the five stationary phases presented in this work conform a group with other earlier synthesized trifluoropropyl siloxanes and other fluorinated stationary phases taken from literature: VB-210, QF-1, DB-200, DB-210 and PFS6, showing the same selectivity which only the fluorine atom confers. A dendrogram of 38 stationary phases supports these results.  相似文献   

11.
A series of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based organic-inorganic hybrid materials for anion exchange were prepared through sol-gel process of polymer precursors PPO-Si(OCH3)3. PPO-Si(OCH3)3 were obtained from the reaction of bromomethylated PPO with 3-aminopropyl-trimethoxysilane (A1110). These polymer precursors then underwent hydrolysis and condensation with additional A1110 to generate hybrid materials. The reaction to produce polymer precursors was identified by FTIR; while FTIR, TGA, XRD, SEM, as well as conventional ion exchange capacity (IEC) measurements were conducted for the structures and properties of the prepared hybrids. TGA results show that this series of hybrid materials possess high thermal stability; XRD and SEM indicate that the prepared hybrid materials are amorphous and the inorganic and organic contents show good compatibility if the ratio between them is proper. The IEC values of the hybrid materials due to the amine groups range from 1.13 mmol/gBPPO (material i) to 4.80 mmol/gBPPO (material iv).  相似文献   

12.
Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. A study on comparison of DGEBA/OAPS with DGEBA/4,4′-diaminodiphenyl sulfone (DDS) epoxy resins was achieved. Differential scanning calorimetry was used to investigate the curing reaction and its kinetics, and the glass transition of DGEBA/OAPS. Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins. The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy. Scanning electron microscopy was used to observe morphology of the two epoxy resins. The results indicated that OAPS had very good compatibility with DGEBA in molecular level, and could form a transparent DGEBA/OAPS resin. The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS. The DGEBA/OAPS resin didn’t exhibit glass transition, but the DGEBA/DDS did, which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points. Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin. Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield, but its initial decomposition temperature seemed to be lowered.  相似文献   

13.
14.
Poly(glycidyl methacrylate-co-butyl methacrylate)/poly(vinylidene chloride-co-methyl acrylate) (poly(GMA-co-BMA)/poly(VDC-co-MA)) composite latexes have been successfully synthesized via a two-stage emulsion polymerization process. In a first step, emulsion copolymerization of GMA and BMA was carried out in optimized conditions (low temperature, neutral pH, starved-feed conditions) to both limit the hydrolysis of epoxy groups and obtain small particle size (typically 30-50 nm size range). Composite latexes were then obtained by a second-stage seeded copolymerization of VDC and MA in the presence of tetrasodium pyrophosphate to control the pH and reach high molecular weight, leading to partial encapsulation of the seed particles (snow-man morphology, in agreement with theoretical expectations). Thermogravimetric analyses performed on the resulting composite particles showed that the epoxy-functionalized seed polymer behaved as an efficient thermal stabilizer of PVDC.  相似文献   

15.
The thermal stability of some hydroxyl-terminated poly(bisphenol A tere- or isophthalates) and their corresponding poly(ester carbonates) made by subsequent coupling with phosgene has been investigated by thermogravimetry. Samples have been studied in nitrogen or air using constant rates of temperature rise or isothermal conditions.The isophthalate-containing polyesters are more thermo-oxidatively stable than their terephthalate analogues and molecular weight has a significant effect on stability. In contrast, there is little difference in the thermal stability of the poly (isophthalate carbonates) and the poly(terephthalate carbonates) and the stability of the latter is relatively independent of the ratio of the diester to carbonate group content. The stability of the poly(terephthalate carbonates) is also relatively insensitive to end-group modifications.  相似文献   

16.
The structure of epoxy-silica nanocomposites prepared by the sol-gel method via the cationic polymerization of the organic component and anhydride curing was studied by small-angle X-ray scattering. In the presence of 1.5% silica in the epoxy polymer, mass-fractal aggregates of the inorganic component are formed. In the range of low and high concentrations of SiO2, microphase segregation with the separation of inclusions randomly distributed in the epoxy matrix occurs.  相似文献   

17.
The aim of this paper was to test the thermal and environmental stability of poly(4-ethynyl-p-xylyleneco-p-xylylene) thin films prepared by chemical vapor deposition(CVD) and to optimize the reaction conditions of the polymer.Fourier transformed infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and fluorescence microscopy were employed to investigate the stability of the reactive polymer coatings in various environmental conditions.Chemical reactivity of the thin films were then tested by Huisgen 1,3-dipolar cycloaddition reaction(‘‘click' reaction).The alkyne functional groups on poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films were found to be stable under ambient storage conditions and thermally stable up to 100 8C when annealed at 0.08 Torr in argon.We also optimized the click reaction conditions of azide-functionalized molecules with poly(4-ethynyl-p-xylylene-co-p-xylylene).The best reaction result was achieved,when copper concentration was 0.5 mmol/L,sodium ascorbate concentration to copper concentration was 5:1.In contrast,the azide concentration and temperature had no obvious effect on the surface reaction.  相似文献   

18.
For many applications poly(styrene) must be treated to reduce its flammability. This is usually done by incorporating a flame retardant additive, usually an organohalogen compound, into the formulation as the polymer is being processed. A potentially very efficient way of introducing flame retardance would be to incorporate a suitable structural unit directly into the polymer. This can be done by using 2,4,4,5,5-pentaphenyl-1,3,2-dioxaphospholane as an initiator for styrene polymerization. The strained carbon–carbon bond of the phospholane undergoes homolysis at moderate temperatures to generate a diradical which initiates polymerization. The resulting polymer contains an O–P–O unit in the mainchain. Thermogravimetry indicates that the thermal stability of the polymer is quite comparable to that of poly(styrene) generated by conventional methods.  相似文献   

19.
Naturally occurred halloysite nanotubes (HNTs) with hollow nanotubular structures were used as a new type filler for poly(propylene) (PP). Nanocomposites based on PP and HNTs were prepared by melt blending. Scanning electronic microscopy (SEM) results suggested HNTs were dispersed in PP matrix evenly at nanoscale after facile modification. Thermal stability of the nanocomposites was found remarkably enhanced by the incorporation of HNTs. Cone calorimetric data also showed the decrease of flammability of the nanocomposites. Entrapment mechanism of the decomposition products in HNTs was proposed to explain the enhancement of thermal stability of the nanocomposites. The barriers for heat and mass transport, the presence of iron in HNTs, are all responsible for the improvement in thermal stability and decrease in flammability. Those results suggested potential promising flame retardant application of HNTs in PP.  相似文献   

20.
An investigation of the thermal stability of poly(methyl methacrylate) (PMMA) blends with poly(vinyl acetate) (PVAc) revealed that PVAc acts as a stabilizer as concerns thermal and photochemical degradation when the processes take place in air. The temperatures of decomposition of these blends are higher than that of pure PMMA. The efficiency of photodegradation and photooxidation in the blends is lower than that of pure PMMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号