首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical Erd?s-Rényi theorems in the case of geometric graphs of special form.  相似文献   

3.
We consider the distance graph G(n, r, s), whose vertices can be identified with r-element subsets of the set {1, 2,..., n}, two arbitrary vertices being joined by an edge if and only if the cardinality of the intersection of the corresponding subsets is s. For s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erd?s–Ko–Rado problem and also play an important role in combinatorial geometry and coding theory. We study some properties of random subgraphs of G(n, r, s) in the Erd?s–Rényi model, in which every edge occurs in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, r, s) for the case of constant r and s. The independence number of a random subgraph is Θ(log2n) times as large as that of the graph G(n, r, s) itself for r ≤ 2s + 1, while for r > 2s + 1 one has asymptotic stability: the two independence numbers asymptotically coincide.  相似文献   

4.
5.
The paper studies the problem indicated in the title, which arises in connection with the well-known Nelson–Erdös–Hadwiger problem of finding the chromatic number of the Euclidean space.  相似文献   

6.
7.
8.
9.
We consider two or more simple symmetric walks on \(\mathbb {Z}^d\) and the 2-dimensional comb lattice, and in case of finite collision, we investigate the properties of the distance among the walkers.  相似文献   

10.
Let R be the set of real numbers and D be a subset of the positive real numbers. The distance graph G(R,D) is a graph with the vertex set R and two vertices x and y are adjacent if and only if |xy|D. In this work, the vertex arboricity (i.e., the minimum number of subsets into which the vertex set V(G) can be partitioned so that each subset induces an acyclic subgraph) of G(R,D) is determined for D being an interval between 1 and δ.  相似文献   

11.
When run on any non-bipartite q-distance regular graph from a family containing graphs of arbitrarily large diameter d, we show that d steps are necessary and sufficient to drive simple random walk to the uniform distribution in total variation distance, and that a sharp cutoff phenomenon occurs. For most examples, we determine the set on which the variation distance is achieved, and the precise rate at which it decays. The upper bound argument uses spectral methods – combining the usual Cauchy-Schwarz bound on variation distance with a bound on the tail probability of a first-hitting time, derived from its generating function. Received: 2 April 1997 / Revised version: 10 May 1998  相似文献   

12.
Using an associated branching process as the basis of our approximation, we show that typical inter‐point distances in a multi‐type random intersection graph have a defective distribution, which is well described by a mixture of translated and scaled Gumbel distributions, the missing mass corresponding to the event that the vertices are not in the same component of the graph. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 179–209, 2011  相似文献   

13.
Questions about a graph’s connected components are answered by studying appropriate powers of a special “adjacency matrix” constructed with entries in a commutative algebra whose generators are idempotent. The approach is then applied to the Erd?s–Rényi model of sequences of random graphs. Developed herein is a method of encoding the relevant information from graph processes into a “second quantization” operator and using tools of quantum probability and infinite-dimensional analysis to derive formulas that reveal the exact values of quantities that otherwise can only be approximated. In particular, the expected size of a maximal connected component, the probability of existence of a component of particular size, and the expected number of spanning trees in a random graph are obtained.  相似文献   

14.
We give general bounds (and in some cases exact values) for the expected hitting and cover times of the simple random walk on some special undirected connected graphs using symmetry and properties of electrical networks. In particular we give easy proofs for an N–1HN-1 lower bound and an N2 upper bound for the cover time of symmetric graphs and for the fact that the cover time of the unit cube is Φ(NlogN). We giver a counterexample to a conjecture of Freidland about a general bound for hitting times. Using the electric approach, we provide some genral upper and lower bounds for the expected cover times in terms of the diameter of the graph. These bounds are tight in many instances, particularly when the graph is a tree. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
16.
Suppose D is a subset of all positive integers. The distance graph G(Z, D) with distance set D is the graph with vertex set Z, and two vertices x and y are adjacent if and only if |xy| ≡ D. This paper studies the chromatic number χ(Z, D) of G(Z, D). In particular, we prove that χ(Z, D) ≤ |D| + 1 when |D| is finite. Exact values of χ(G, D) are also determined for some D with |D| = 3. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 287–294, 1997  相似文献   

17.
For two nonisomorphic orientations D and D′ of a graph G, the orientation distance do(D,D′) between D and D′ is the minimum number of arcs of D whose directions must be reversed to produce an orientation isomorphic to D′. The orientation distance graph 𝒟o(G) of G has the set 𝒪(G) of pairwise nonisomorphic orientations of G as its vertex set and two vertices D and D′ of 𝒟0(G) are adjacent if and only if do(D,D′) = 1. For a nonempty subset S of 𝒪(G), the orientation distance graph 𝒟0(S) of S is the induced subgraph 〈S〉 of 𝒟o(G). A graph H is an orientation distance graph if there exists a graph G and a set S⊆ 𝒪(G) such that 𝒟o(S) is isomorphic to H. In this case, H is said to be an orientation distance graph with respect to G. This paper deals primarily with orientation distance graphs with respect to paths. For every integer n ≥ 4, it is shown that 𝒟o(Pn) is Hamiltonian if and only if n is even. Also, the orientation distance graph of a path of odd order is bipartite. Furthermore, every tree is an orientation distance graph with respect to some path, as is every cycle, and for n ≥ 3 the clique number of 𝒟o(Pn) is 2 if n is odd and is 3 otherwise. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 230–241, 2001  相似文献   

18.
It is shown that for every >0 with the probability tending to 1 as n→∞ a random graph G(n,p) contains induced cycles of all lengths k, 3 ≤ k ≤ (1 − )n log c/c, provided c(n) = (n − 1)p(n)→∞.  相似文献   

19.
A graph H is Ks ‐saturated if it is a maximal Ks ‐free graph, i.e., H contains no clique on s vertices, but the addition of any missing edge creates one. The minimum number of edges in a Ks ‐saturated graph was determined over 50 years ago by Zykov and independently by Erd?s, Hajnal and Moon. In this paper, we study the random analog of this problem: minimizing the number of edges in a maximal Ks ‐free subgraph of the Erd?s‐Rényi random graph G (n, p ). We give asymptotically tight estimates on this minimum, and also provide exact bounds for the related notion of weak saturation in random graphs. Our results reveal some surprising behavior of these parameters. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 51, 169–181, 2017  相似文献   

20.
Threshold probabilities for the existence in a random graph on n vertices of a graph isomorphic to a given graph of order Cn and average degree at least three are investigated. In particular it is proved that the random graph G(n, p) on n vertices with edge probability contains a square grid on En/2 vertices. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号