首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let (j1,..., jn) be a permutation of the n-tuple (1, ..., n). A system of differential equations \(\dot x = {f_i}\left( {{x_{{j_i}}}} \right),i = 1, \ldots ,n\) in which each function fi is continuous on ? is considered. This system is said to have the property of generation of solutions with a small period if, for any number M > 0, there exists a number ω0 = ω0(M) > 0 such that if 0 < ω ≤ ω0 and hi(t, x1, ..., xn) are continuous functions on ? × ?n ω-periodic in t that satisfy the inequalities |hi| ≤ M the system \(\dot x = {f_i}\left( {{x_{{j_i}}}} \right),i = 1, \ldots ,n\) has an ω-periodic solution. It is shown that a system has the property of generation of solutions with a small period if and only if fi(?) = ? for i = 1,..., n. It is also shown that the smallness condition on the period is essential.  相似文献   

2.
Let φ be an N-function. Then the normal structure coefficients N and the weakly convergent sequence coefficients WCS of the Orlicz function spaces L φ[0, 1] generated by φ and equipped with the Luxemburg and Orlicz norms have the following exact values. (i) If F φ(t) = t ?(t)/φ(t) is decreasing and 1 < C φ < 2 (where \(C_\Phi = \lim _{t \to + \infty } t\varphi (t)/\Phi (t)\)), then N(L (φ)[0, 1]) = N(L φ[0, 1]) = WCS(L (φ)[0, 1]) = WCS(L φ[0, 1]) = 21?1/Cφ. (ii) If F φ(t) is increasing and C φ > 2, then N(L (φ)[0, 1]) = N(L φ[0, 1]) = WCS(L (φ)[0, 1]) = WCS(L φ[0, 1]) = 21/Cφ.  相似文献   

3.
Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R~n×R~m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R~n× R~m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R~n× R~m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R~n× R~m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R~n× R~m) to L~φ(R~n× R~m)and from H~φ_A(R~n×R~m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R~n× R~m and are new even for classical product Orlicz-Hardy spaces.  相似文献   

4.
Rearranged series by Haar system   总被引:2,自引:2,他引:0  
For the orthonormal Haar system {X n} the paper proves that for each 0 < ? < 1 there exist a measurable set E ? [0, 1] with measure | E | > 1 ? ? and a series of the form Σ n=1 a n X n with a i ↘ 0, such that for every function fL 1(0, 1) one can find a function \(\tilde f\)L 1(0, 1) coinciding with f on E, and a series of the form
$\sum\limits_{i = 1}^\infty {\delta _i a_i \chi _i } where \delta _i = 0 or 1$
, that would converge to \(\tilde f\) in L 1(0, 1).
  相似文献   

5.
Let R be a prime ring of characteristic different from 2 and extended centroid C and let f(x1,..., x n ) be a multilinear polynomial over C not central-valued on R, while δ is a nonzero derivation of R. Suppose that d and g are derivations of R such that
$\delta (d(f(r_1 , \ldots ,r_n ))f(r_1 , \ldots ,r_n ) - f(r_1 , \ldots ,r_n )g(f(r_1 , \ldots ,r_n ))) = 0$
for all r1,..., r n R. Then d and g are both inner derivations on R and one of the following holds: (1) d = g = 0; (2) d = ?g and f(x 1,..., x n )2 is central-valued on R.
  相似文献   

6.
We give existence, nonexistence and multiplicity results of nonnegative solutions for Dirichlet problems of the form
$ - {\Delta_p}v = \lambda f(x){\left( {1 + g(v)} \right)^{p - 1}}\quad {\text{in}}\ \Omega,\quad u = 0\quad {\text{on}}\ \partial \Omega, $
where Δ p is the p-Laplacian (p > 1), g is nondecreasing, superlinear, and possibly convex, λ > 0, and fL 1 (Ω), f ≥ 0. New information on the extremal solutions is given. Equations with measure data are also considered.
  相似文献   

7.
In the space L 2 of real-valued measurable 2π-periodic functions that are square summable on the period [0, 2π], the Jackson-Stechkin inequality
$$E_n (f) \leqslant \mathcal{K}_n (\delta ,\omega )\omega (\delta ,f), f \in L^2 $$
, is considered, where E n (f) is the value of the best approximation of the function f by trigonometric polynomials of order at most n and ω(δ, f) is the modulus of continuity of the function f in L 2 of order 1 or 2. The value
$$\mathcal{K}_n (\delta ,\omega ) = \sup \left\{ {\frac{{E_n (f)}}{{\omega (\delta ,f)}}:f \in L^2 } \right\}$$
is found at the points δ = 2π/m (where m ∈ ?) for m ≥ 3n 2 + 2 and ω = ω 1 as well as for m ≥ 11n 4/3 ? 1 and ω = ω 2.
  相似文献   

8.
Consider the second order discrete Hamiltonian systems Δ2u(n-1)-L(n)u(n) + ▽W (n, u(n)) = f(n),where n ∈ Z, u ∈ RN and W : Z × RN → R and f : Z → RN are not necessarily periodic in n. Under some comparatively general assumptions on L, W and f , we establish results on the existence of homoclinic orbits. The obtained results successfully generalize those for the scalar case.  相似文献   

9.
Let \({A=-(\nabla-i{\vec a})\cdot (\nabla-i{\vec a}) +V}\) be a magnetic Schrödinger operator acting on \({L^2({\mathbb R}^n)}\), n ≥  1, where \({{\vec a}=(a_1, \ldots, a_n)\in L^2_{\rm loc}({\mathbb R}^n, {\mathbb R}^n)}\) and \({0\leq V\in L^1_{\rm loc}({\mathbb R}^n)}\). In this paper, we show that when a function \({b\in {\rm BMO}({\mathbb R}^n)}\), the commutators [b, T k ]f = T k (b f) ? b T k f, k = 1, . . . , n, are bounded on \({L^p({\mathbb R}^n)}\) for all 1 < p < 2, where the operators T k are Riesz transforms (?/?x k  ? i a k )A ?1/2 associated with A.  相似文献   

10.
The paper considers cubature formulas for calculating integrals of functions f(X), X = (x 1, …, x n ) which are defined on the n-dimensional unit hypercube K n = [0, 1] n and have integrable mixed derivatives of the kind \(\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)\), 0 ≤ α j ≤ 2. We estimate the errors R[f] = \(\smallint _{K^n } \) f(X)dX ? Σ k = 1 N c k f(X(k)) of cubature formulas (c k > 0) as functions of the weights c k of nodes X(k) and properties of integrable functions. The error is estimated in terms of the integrals of the derivatives of f over r-dimensional faces (rn) of the hypercube K n : |R(f)| ≤ \(\sum _{\alpha _j } \) G j )\(\int_{K^r } {\left| {\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)} \right|} \) dX r , where coefficients G j ) are criteria which depend only on parameters c k and X(k). We present an algorithm to calculate these criteria in the two- and n-dimensional cases. Examples are given. A particular case of the criteria is the discrepancy, and the algorithm proposed is a generalization of those used to compute the discrepancy. The results obtained can be used for optimization of cubature formulas as functions of c k and X(k).  相似文献   

11.
Any analytic signal fa(e~(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e~(it)) = e~(iN0t)M∑k=0a_k~(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0~(2π)|1+H∑k=1h_k~(eikt)|~2|fa(e~(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e~(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e~(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e~(it))|~2,the exact solution of the minimum-phase signal of fa(e~(it)) can be extracted out. On the other hand, we show that the Fourier system e~(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e~(it)) :=((1-|α_k|~2e~(it))/(1-α_ke~(it))~(1/2)∏_(j=1)~(k-1)(e~(it)-α_j/(1-α_je~(it))~(1/2), k = 1, 2,..., r_0(e~(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out.  相似文献   

12.
The Hirzebruch functional equation is \(\sum\nolimits_{i = 1}^n {\prod\nolimits_{j \ne i} {(1/f({z_j} - {z_i})) = c} } \) with constant c and initial conditions f(0) = 0 and f'(0) = 1. In this paper we find all solutions of the Hirzebruch functional equation for n ≤ 6 in the class of meromorphic functions and in the class of series. Previously, such results have been known only for n ≤ 4. The Todd function is the function determining the two-parameter Todd genus (i.e., the χa,b-genus). It gives a solution to the Hirzebruch functional equation for any n. The elliptic function of level N is the function determining the elliptic genus of level N. It gives a solution to the Hirzebruch functional equation for n divisible by N. A series corresponding to a meromorphic function f with parameters in U ? ?k is a series with parameters in the Zariski closure of U in ?k, such that for the parameters in U it coincides with the series expansion at zero of f. The main results are as follows: (1) Any series solution of the Hirzebruch functional equation for n = 5 corresponds either to the Todd function or to the elliptic function of level 5. (2) Any series solution of the Hirzebruch functional equation for n = 6 corresponds either to the Todd function or to the elliptic function of level 2, 3, or 6. This gives a complete classification of complex genera that are fiber multiplicative with respect to ?Pn?1 for n ≤ 6. A topological application of this study is an effective calculation of the coefficients of elliptic genera of level N for N = 2,..., 6 in terms of solutions of a differential equation with parameters in an irreducible algebraic variety in ?4.  相似文献   

13.
Let A N to be N points in the unit cube in dimension d, and consider the discrepancy function $$ D_N (\vec x): = \sharp \left( {\mathcal{A}_N \cap \left[ {\vec 0,\vec x} \right)} \right) - N\left| {\left[ {\vec 0,\vec x} \right)} \right| $$ Here, $$ \vec x = \left( {\vec x,...,x_d } \right),\left[ {0,\vec x} \right) = \prod\limits_{t = 1}^d {\left[ {0,x_t } \right),} $$ and $ \left| {\left[ {0,\vec x} \right)} \right| $ denotes the Lebesgue measure of the rectangle. We show that necessarily $$ \left\| {D_N } \right\|_{L^1 (log L)^{(d - 2)/2} } \gtrsim \left( {log N} \right)^{\left( {d - 1} \right)/2} . $$ In dimension d = 2, the ‘log L’ term has power zero, which corresponds to a Theorem due to [11]. The power on log L in dimension d ≥ 3 appears to be new, and supports a well-known conjecture on the L 1 norm of D N . Comments on the discrepancy function in Hardy space also support the conjecture.  相似文献   

14.
Let L2 be the space of 2π-periodic square-summable functions and E(f, X)2 be the best approximation of f by the space X in L2. For n ∈ ? and BL2, let \({{\Bbb S}_{B,n}}\) be the space of functions s of the form \(s\left( x \right) = \sum\limits_{j = 0}^{2n - 1} {{\beta _j}B\left( {x - \frac{{j\pi }}{n}} \right)} \). This paper describes all spaces \({{\Bbb S}_{B,n}}\) that satisfy the exact inequality \(E{\left( {f,{S_{B,n}}} \right)_2} \leqslant \frac{1}{{^{{n^r}}}}\parallel {f^{\left( r \right)}}{\parallel _2}\). (2n–1)-dimensional subspaces fulfilling the same estimate are specified. Well-known inequalities are for approximation by trigonometric polynomials and splines obtained as special cases.  相似文献   

15.
We obtain upper bounds for the multiplicity of an isolated solution of a system of equations f 1 = ... = f M = 0 in M variables, where the set of polynomials (f 1, ..., f M ) is a tuple of general position in a subvariety of a given codimension which does not exceed M, in the space of tuples of polynomials. It is proved that as M → ∞ this multiplicity grows no faster than \(\sqrt M \exp \left[ {\omega \sqrt M } \right]\), where ω > 0 is a certain constant.  相似文献   

16.
Let S be the set of square-free natural numbers. A Hilbert-Schmidt operator, A, associated to the Möbius function has the property that it maps from \({ \cup _{0 < r < \infty }}{l^r}(s)\) to \({ \cap _{0 < r < \infty }}{l^r}(s)\), injectively. If 0 < r< 2 and ξlr (S), the series \({f_\zeta } = \sum\nolimits_{n \in s} {A\zeta (x)cos2\pi nx} \) converges uniformly to an element of fξR0, i.e., a periodic, even, continuous function with equally spaced Riemann sums, \(\sum\nolimits_{j = 0}^{N - 1} {{f_\zeta }} (j/N) = 0,N = 1,2....\) If \({A_{\zeta \lambda }} = \lambda {\zeta _\lambda },{\zeta _\lambda }(1) = 1\), then ξλ is multiplicative. If \({f_{{\zeta _\lambda }}} \in {\Lambda _a}\), the space of α-Lipschitz continous functions, for some α > 0, and if χ is any Dirichlet character, then L(s, χ) ≠ 0, Res > 1 ? α. Conjecturally, the Generalized Riemann Hypothesis (GRH) is equivalent to fξ ∈ Λα, α < 1/2, ξlr (S), 0 < r < 2. Using a 1991 estimate by R. C. Baker and G. Harman, one finds GRH implies fξ ∈ Λα, α < 1/4, ξlr (S), 0 < r < 2. The question of whether R0 ∩ Λα ≠ {0} for some positive α > 0 is open.  相似文献   

17.
We prove the conditional exponential stability of the zero solution of the nonlinear differential system
$$\dot y = A(t)y + f(t,y),{\mathbf{ }}y \in R^n ,{\mathbf{ }}t \geqslant 0,$$
with L p -dichotomous linear Coppel-Conti approximation .x = A(t)x whose principal solution matrix X A (t), X A (0) = E, satisfies the condition
$$\mathop \smallint \limits_0^t \left\| {X_A (t)P_1 X_A^{ - 1} (\tau )} \right\|^p d\tau + \mathop \smallint \limits_t^{ + \infty } \left\| {X_A (t)P_2 X_A^{ - 1} (\tau )} \right\|^p d\tau \leqslant C_p (A) < + \infty ,{\mathbf{ }}p \geqslant 1,{\mathbf{ }}t \geqslant 0,$$
where P 1 and P 2 are complementary projections of rank k ∈ {1, …, n ? 1} and rank n ? k, respectively, and with a higher-order infinitesimal perturbation f:[0, ∞) × UR n that is piecewise continuous in t ≥ 0 and continuous in y in some neighborhood U of the origin.
  相似文献   

18.
We prove that, given a sequence {ak}k=1 with ak ↓ 0 and {ak}k=1 ? l2, reals 0 < ε < 1 and p ∈ [1, 2], and fLp(0, 1), we can find fLp(0, 1) with mes{f ≠ f < ε whose nonzero Fourier–Walsh coefficients ck(f) are such that |ck(f)| = ak for k ∈ spec(f).  相似文献   

19.
Let L be a Schrdinger operator of the form L =-? + V acting on L~2(R~n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R~n) denote the BMO space associated to the Schrdinger operator L on R~n. In this article, we show that for every f ∈ BMO_L(R~n) with compact support, then there exist g ∈ L~∞(R~n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R~n), where S_(μ,P)=∫(R_+~(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-~(t(L)~(1/2))}t0 on L~2(R~n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R~n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.  相似文献   

20.
We study the behavior of measure-preserving systems with continuous time along sequences of the form {n α}n∈#x2115;} where α is a positive real number1. Let {S t } t∈? be an ergodic continuous measure preserving flow on a probability Lebesgue space (X, β, μ). Among other results we show that:
  1. For all but countably many α (in particular, for all α∈???) one can find anL -functionf for which the averagesA N (f)(1/N)=Σ n=1 N f(S nα x) fail to converge almost everywhere (the convergence in norm holds for any α!).
  2. For any non-integer and pairwise distinct numbers α1, α2,..., α k ∈(0, 1) and anyL -functionsf 1,f 2, ...,f k , one has $$\mathop {lim}\limits_{N \to \infty } \left\| {\frac{1}{N}\sum\limits_{n - 1}^N {\prod\limits_{i - 1}^k {f_i (S^{n^{\alpha _i } } x) - \prod\limits_{i - 1}^k {\int_X {f_i d\mu } } } } } \right\|_{L^2 } = 0$$
We also show that Furstenberg’s correspondence principle fails for ?-actions by demonstrating that for all but a countably many α>0 there exists a setE?? having densityd(E)=1/2 such that, for alln∈?, $$d(E \cap (E - n^\alpha )) = 0$$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号