首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, the buckling problem of non-uniform columns subjected to axial concentrated and distributed loading is studied. The expression for describing the distribution of flexural stiffness of a non-uniform column is arbitrary, and the distribution of axial forces acting on the column is expressed as a functional relation with the distribution of flexural stiffness and vice versa. The governing equation for buckling of a non-uniform column with arbitrary distribution of flexural stiffness or axial forces is reduced to a second-order differential equation without the first-order derivative by means of functional transformations. Then, this kind of differential equation is reduced to Bessel equations and other solvable equations for 12 cases, several of which are important in engineering practice. The exact solutions that represent a class of exact functional solutions for the buckling problem of non-uniform columns subjected to axial concentrated and distributed loading are obtained. In order to illustrate the proposed method, a numerical example is given in the last part of this paper.  相似文献   

2.
Abstract

The effect of various parameters upon the region of dynamic instability of a uniform simply supported column carrying n concentrated masses and subjected to an axial periodic force at one end is presented. The effect of axial inertia of the mass per unit length of the column is also included. This problem is reduced to a coupled system of two homogeneous partial differential equations of second order with periodic coefficients which can be written in the form of a matric differential equation of the Mathieu-Hill type. A solution methodology is developed and successfully demonstrated through numerical examples.  相似文献   

3.
IntroductionThestraightcolumnisakindofstructuralcomponentsoftenusedinenginering,itsdynamicbucklinghasbenpaidmuchatentiontofor...  相似文献   

4.
Summary Stability of a heavy elastic column loaded by a concentrated force at the top is analysed. It is assumed that the column is fixed to a rigid circular plate that is positioned on a homogeneous, isotropic, linearly elastic half-space. The constitutive equations for the column are assumed in the form that allows axial compressibility and takes into account the influence of shear stresses. It is shown that eigenvalues of the linearized equations determine the bifurcation points of the full non-linear system of equilibrium equations. Also, the type of bifurcation at the lowest eigenvalue is examined and shown that it could be both super-and sub-critical. The post-critical shape of the column is determined by numerical integration of the equilibrium equations. Received 13 June 1998; accepted for publication 12 November 1998  相似文献   

5.
The deformation of a circular cylindrical elastic tube of finite wall thickness rotating about its axis is examined. A circular cylindrical deformed configuration is considered first, and the angular speed analysed as a function of an azimuthai deformation parameter at fixed axial extension for an arbitrary form of incompressible, isotropic elastic strain-energy function. This extends the analysis given previously (Haughton and Ogden, 1980) for membrane tubes.Bifurcation from a circular cylindrical configuration is then investigated. Prismatic, axisymmetric and asymmetric bifurcation modes are discussed separately. Their relative importance is assessed in relation to the wall thickness and length of the tube, the magnitude of the axial extension, and the angular speed turning-points. Numerical results are given for a specific form of strain-energy function.Amongst other results it is found that (i) for long tubes, asymmetric modes of bifurcation can occur at low values of the angular speed and before any possible axisymmetric or prismatic modes and (ii) for short tubes, there is a range of values of the axial extension (including zero) for which no bifurcation can occur during rotation.  相似文献   

6.
The electromechanical properties of metallic single-walled carbon nanotubes (SWCNTs) in the electric field are demonstrated with a column shell model in this paper.A hemisphere model is introduced to determine the charge distribution and the local electric field in SWCNTs.By treating the SWCNT as an elastic column shell,the analytical solutions of the charged SWCNT’s axial strain and the radial strain are obtained.SWCNTs with a larger aspect ratio show greater deformation.The greatest radial deformation appears at the end of the tube.The significant axial strain can be induced in CNTs with a large length (around 100 nm) even though the applied electric field is not strong enough.When SWCNTs are fixed at both ends,the radius of SWCNTs becomes small along the axial position.  相似文献   

7.
Bucklewaves     
Motivated by a selection of results on the plastic buckling of column members within a sandwich plate core where one face of the sandwich is subject to an intense impulse, the problem addressed is one where lateral buckling takes place simultaneously as a compressive axial wave propagates down the member. The bucklewave problem is modeled as an infinitely long column (or wide plate) which is clamped against lateral deflection at the end where velocity is imposed and has a moving clamped condition coinciding with the front of the plastic compression wave. The model reveals that a column or plate suddenly compressed into the plastic range is dynamically stabilized against lateral buckling for lengths that are significantly longer than the corresponding length at which the member would buckle quasi-statically. This stabilization has significant implications for energy absorption under intense dynamic loading. The analysis method is benchmarked against a simpler, but mathematically analogous problem, for which closed form solutions are available: the dynamics of a guitar string lengthening at constant velocity.  相似文献   

8.
The stability of postcritical equilibrium forms of a simply supported column loaded with an axial force is analyzed. Investigating the sign of the second variation of the column's total energy, we obtain the Sturm-Liouville boundary-value problem, which is solved numerically. The stability conditions are formulated in terms of eigenvalues of the problem. The complete solution to the column plane elastica is given. The ranges of the compressive force corresponding to stable equilibrium configurations of the column are established.  相似文献   

9.
李国强  王培军 《力学季刊》2007,28(2):246-255
火灾升温引起钢材强度和刚度降低,对温度沿截面分布不均匀的构件还将产生热弯曲,火灾下结构分析同时涉及几何非线性和材料非线性,无法求得解析解,只能通过数值方法求解.本文基于轴线可伸长梁理论,用勒让德多项式作为基函数逼近梁柱轴向和横向变形,根据平衡方程误差平方和最小的条件确定多项式系数的方法,分析了轴向约束钢柱在火灾引起的沿截面线性分布温度场下的受力和变形性能.考虑了温度梯度、轴向约束刚度比、荷载比、构件长度等参数的影响和升温条件下钢材的弹塑性性能的影响,该方法结果与解析结果和有限元分析结果吻合.研究表明,随着荷载比的增大构件的临界温度迅速降低,轴向约束刚度、温度梯度和构件长度仅影响构件的变形,对构件的临界温度影响较小.  相似文献   

10.
The effect of axial load on the behavior of columns consisting of alternate layers of rubber and curved or flat rigid shims is analyzed. First, finite difference equations governing the column response are derived. Relative movement between adjacent shims is assumed to be linear with respect to shearing force and bending moment, but the relation between axial load and this movement is not required to be linear. The equations are then approximated by letting the number of layers become infinite while the column length remains finite. The resulting differential equations for this so-called continuum column are solved for critical loads and mode shapes for globally homogeneous columns with three different end conditions. A general discrete analysis of the same problem, which is more appropriate for columns with a small number of layers and for nonhomogeneous columns, is also presented. Comparison of the two analyses establishes the limits of applicability of the approximate continuum analysis. The theory is then shown to agree quite well with experimental results for critical loads and mode shapes.  相似文献   

11.
The use of distributions (generalized functions) is a powerful tool to treat singularities in structural mechanics and, besides providing a mathematical modelling, their capability of leading to closed form exact solutions is shown in this paper. In particular, the problem of stability of the uniform Euler–Bernoulli column in presence of multiple concentrated cracks, subjected to an axial compression load, under general boundary conditions is tackled. Concentrated cracks are modelled by means of Dirac’s delta distributions. An integration procedure of the fourth order differential governing equation, which is not allowed by the classical distribution theory, is proposed. The exact buckling mode solution of the column, as functions of four integration constants, and the corresponding exact buckling load equation for any number, position and intensity of the cracks are presented. As an example a parametric study of the multi-cracked simply supported and clamped–clamped Euler–Bernoulli columns is presented.  相似文献   

12.
Pin-ended columns having an initial imperfection in a second buckling mode and subjected to thermal loading have been studied in this paper. Based on a nonlinear relationship between strains and displacements, the buckling equilibrium equations are given with the energy method. Then the formulae for the axial compression and transversal displacement are presented. The relationship between the anti-symmetric imperfection and the axial compression has been studied along with the effect of elevated temperature on the initial imperfection. The response of the column in fire to the modified slenderness ratio is investigated. The proposed method has the potential to provide more detailed information for column designs and thus be deployed in future research to minimize the need for expensive laboratory testing.  相似文献   

13.
The problem of determining that shape of column which has the largest critical buckling load is solved, assuming that the length and volume are given and that each cross section is convex. The strongest column has an equilateral triangle as cross section, and it is tapered along its length, being thickest in the middle and thinnest at its ends. Its buckling load is 61.2% larger than that of a circular cylinder. For columns all of whose cross sections are similar and of prescribed shape-not necessarily convex—the best tapering is found to increase the buckling load by one third over that of a uniform column. This result, which was independently obtained by H. F. Weinberger, is originally due to Clausen (1851). For a uniform column, triangularizing is shown to increase the buckling load by 20.9% over that of a circular cylinder. The results lead to isoperimetric inequalities for the buckling loads of arbitrary columns. The research reported in this paper has been sponsored by the Office of Naval Research under Contract No. (285) 46.  相似文献   

14.
为量化梁、杆、柱的自重(下称分布轴向力)对静力失稳和动力横向振动的影响,在《材料力学》和《机械系统动力学》教材的基础上,建立了分布轴向力下的杆柱失稳和横向振动的力学、数学模型.采用有限差分法、伽辽金法和数值积分法获取计算结果.结果表明:考虑分布轴向力的杆柱横向振动固有频率随杆长增加而减小,杆柱失稳时一阶固有频率为0;分...  相似文献   

15.
In most cases,the research on the buckling of a helical spring is based on the column,the spring is equivalent to the column,and the torsion around the axial line is ignored.A three-dimensional(3D) helical spring model is considered in this paper.The equilibrium equations are established by introducing two coordinate systems,the Frenet and the principal axis coordinate systems,to describe the spatial deformation of the center line and the torsion of the cross section of the spring,respectively.By using a small deformation assumption,the variables of the deflection can be expanded into Taylor’s series,and the terms of high orders are ignored.Hence,the equations can be simplified to the functions of the twist angle and the arc length,which can be solved by a numerical method.The reaction loads of the spring caused by the axial load subjected to the center point are also discussed,giving the boundary conditions for the solution to the equilibrium equations.The present work is useful to the research on the behavior of the post-buckling of the compressed helical spring.  相似文献   

16.
Axisymmetric problem of a nonhomogeneous elastic layer   总被引:3,自引:0,他引:3  
Summary The paper deals with a theoretical treatment of elastic behavior for a medium with nonhomogeneous materials property, which is defined by the relation , i.e., shear modulus of elasticity G varies with the dimensionless axial coordinate by the power product form, arbitrarily. Fundamental differential equation for such nonhomogeneous medium has been already proposed in [5]. It is given by a second-order partial differential equation. However, it was found that the fundamental equation is not sufficient in general to solve several kinds of boundary-value problems. On the other hand, it is shown in the present paper making use of the fundamental equations system for a nonhomogeneous medium, which has been proposed in our previous paper [7], it is possible to solve axisymmetric problems for a thick plate (layer) subjected to an arbitrarily distributed load or a concentrated load on its surfaces. Numerical calculations are carried out for several cases, taking into account the variation of the nonhomogeneous parameter m. The numerical results for displacements stress and components are shown in graphical form. Accepted for publication 25 March 1997  相似文献   

17.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement—small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) postbuckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural–torsional behavior. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method (AEM), a BEM based method, leading to a system of nonlinear Differential–Algebraic Equations (DAE). The main purpose of the present contribution is twofold: (i) comparison of both the governing differential equations and the numerical results of linear or nonlinear free or forced vibrations of bars ignoring or taking into account the secondary twisting moment deformation effect (STMDE) and (ii) numerical investigation of linear or nonlinear free vibrations of bars at torsional postbuckling configurations. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy.

  相似文献   

18.
基于能量变分原理,拟定轴向荷载作用下箱梁的纵向位移函数,得到关于翼板剪切变形引起的位移差函数的基本微分方程,继而推导出箱梁翼板纵向应力表达式,并首次得出角隅轴向荷载作用下翼板出现应力不均匀分布的荷载及边界条件。通过对一模型箱梁进行计算,并与通用有限元软件ANSYS壳单元计算结果进行比较,验证了该方法和所推导公式的正确性。研究结果表明,当作用于简支箱梁截面角隅处的轴向荷载(合力无偏心)为集中或分布荷载时,翼板不产生纵向应力不均匀现象;当作用于悬臂箱梁截面角隅处的轴向荷载(合力无偏心)为集中荷载时,翼板不产生纵向应力不均匀现象,而当荷载轴向分布时,翼板将产生纵向应力不均匀现象。实际工程中,横力弯曲使悬臂箱梁产生剪力滞效应,这种效应会与轴向分布荷载产生的效应叠加,设计时对此应予以充分考虑。  相似文献   

19.
This investigation treats the static response of a single elastic cable which is suspended between two points that are not necessarily at the same level. The cable is loaded by its self-weight and any number of concentrated vertical loads which may be arbitrarily placed along its length. The analysis presented uses a Lagrangian approach. For the strained cable profile, the tension and displacements are given as functions of a single Lagrangian co-ordinate. A specific application of the general analysis is made and compared with a simple experiment.  相似文献   

20.
In this paper the post-critical behavior of beam columns with variable mass and stiffness properties subjected to follower forces arbitrarily distributed along their length in the presence of damping (both internal and external) is investigated using a complete nonlinear dynamic analysis. Although the static nonlinear analysis is more economical in computational cost, it is associated only with the loss of local stability via flutter or divergence. Thus, the nonlinear dynamic analysis is adopted in order to examine the global stability of the system. The governing equations of hyperbolic type are derived in terms of the displacements by considering (a) nonlinear response including the axial deformation, (b) nonlinear response excluding the axial deformation and (c) linear response. Moreover, as the cross-sectional properties of the beam vary along its axis, the resulting coupled nonlinear differential equations have variable coefficients. Their solution is achieved using the analog equation method (AEM) of Katsikadelis. Besides its accuracy and effectiveness, this method overcomes the shortcoming of a possible FEM solution which may experience a lack of convergence. The problems treated in this investigation include beam columns with various load distributions, such as constant, linear and parabolic. Some of the conclusions detected in studying the nonlinear dynamic stability of Beck’s column with variable cross section (Katsikadelis and Tsiatas, Nonlinear dynamic stability of damped Beck’s column with variable cross section. Int. J. Non-linear Mech. 42, 164–171, 2007), are also valid for the case of distributed loads. The important, however, finding is that the post-critical response under distributed loads depends on the law of distribution of mass and stiffness properties, which may lead also to explosive flutter (unbounded amplitude), in contrast to Beck’s column (end-tip load) where the motion is always bounded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号