首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Deviations from the classic Gouy-Chapman (GC) model due to the finite size of hydrated counterions were tested for negatively charged Langmuir monolayers with different surface charge densities. Monolayers with the largest charge density (>0.6 C.m(-2)) show an increase of the surface potential for a series of alkali metal cations from Li(+) to Cs(+) by 200-250 mV. The increase is similar for different monolayers and suggests that this effect is independent of the particular type of headgroup. The magnitude of variation is comparable with model estimations of the electrical double layer (EDL) potential implying that the deviation from the GC model is drastic. Deviations from the GC model rapidly vanish with decreasing monolayer charge density and become hardly observable below 0.3 C.m(-2). For monolayers with a high charge density on subphases containing different sized counterions, preferential participation of the smallest ions in the EDL should be favorable in terms of electrostatic free energy because of packing density limitations. This effect was demonstrated for behenyl sulfate (BS) monolayers (0.64 C.m(-2)) with the X-ray reflectivity technique. For the Cs(+)-Li(+) system, the fraction of Cs(+) in the EDL is 50-60% compared with only 10% of Cs(+) in the subphase. Providing high surface charge density, a small univalent Cs(+) is capable to compete even with a bulky divalent Mg(2+). For equal concentrations of Cs(+) and Mg(2+) in the subphase, the Cs(+)/Mg(2+) ratio in EDL of BS monolayer is 1.3 to 2.0 (in contrast to 0.04, predicted by the GC model). All experimental results of this study are described in terms of packing density limitations for hydrated counterions in the EDL.  相似文献   

2.
In order to be used in versatile DNA delivery systems, novel cationic lipids were synthesized. The head groups of the new compounds represented by monoamines or oligoamines can be charged or uncharged depending on the environmental pH. Since their pK values are unknown, the protonation properties of these lipids have been studied in a wide pH range. In our experiments, the amphiphilic molecules were organized as a Langmuir monolayer at the air-water interface. Total reflection X-ray fluorescence (TRXF) was used to determine the 2D concentration of bromide counterions bound to a positively charged (protonated) Langmuir monolayer. The protonation rate of the novel cationic lipids was estimated by comparing the fluorescence intensity with that of dioctadecyldimethylammonium bromide monolayers as a reference. TRXF investigations were supplemented with results of film-balance measurements, grazing incidence X-ray diffraction, and X-ray reflectivity data. The results obtained display that the monolayers of all studied compounds are completely uncharged at pH values above 10. In the investigated pH region, the highest protonation rate of the monolayers is observed at pH 3. The influence of the monolayer packing density on the protonation properties is clearly shown.  相似文献   

3.
We used both localized and periodic calculations on a series of monovalent (Li+, Na+, K+, Rb+, Cs+) and divalent (Mg2+, Ca2+, Sr2+, Ba2+) cations to monitor their effect on the swelling of clays. The activity order obtained for the exchangeable cations among all the monovalent and divalent series studied: Ca2+ > Sr2+ > Mg2+ > Rb+ > Ba2+ > Na+ > Li+ > Cs+ > K+. We have shown that, in case of dioctahedral smectite, the hydroxyl groups play a major role in their interaction with water and other polar molecules in the presence of an interlayer cation. We studied both type of clays, with a different surface structure and with/without water using a periodic calculation. Interlayer cations and charged 2:1 clay surfaces interact strongly with polar solvents; when it is in an aqueous medium, clay expands and the phenomenon is known as crystalline swelling. The extent of swelling is controlled by a balance between relatively strong swelling forces and electrostatic forces of attraction between the negatively charged phyllosilicate layer and the positively charged interlayer cation. We have calculated the solvation energy at the first hydration shell of an exchangeable cation, but the results do not correspond directly to the experimental d-spacing values. A novel quantitative scale is proposed with the numbers generated by the relative nucleophilicity of the active cation sites in their hydrated state through Fukui functions within the helm of the hard soft acid base principle. The solvation effect thus measured show a perfect match with experiment, which proposes that the reactivity index calculation with a first hydration shell could rationalize the swelling mechanism for exchangeable cations. The conformers after electron donation or acceptance propose the swelling mechanism for monovalent and divalent cations.  相似文献   

4.
Complexation of lipids and surfactants with short DNA fragments at the air-water interface has been studied by neutron reflectivity. Complexation with zwitterionic lipids occurs in the presence of divalent cations, and ion specificity has been demonstrated (binding is less effective with Ba2+ than with Mg2+ or Ca2+). One and two DNA layers have been observed for dilute and more compact lipid monolayers, respectively. Two DNA layers have also been found with the soluble cationic surfactant dodecyltrimethylammonium bromide (DTAB), except close to the precipitation boundary. This result is opposite to that found in ellipsometry where very thick layers are found in this region. It is possible that the ellipsometry signal is due to highly hydrated bulk complexes adsorbing at the surface, not seen by neutrons because of unfavorable contrast conditions. Long DNA was found to be less keen to form surface complexes than short DNA fragments.  相似文献   

5.
Cesium-selective electrodes were prepared from a synthetic zeolite molecular sieve of the mordenite type. The membrane was made from zeolite crystals embedded in an epoxy resin. The response towards cesium ions -was linear from about 3 × 10-5 to at least 0.1 mol l-1, with almost Nernstian slope. The usable pH range was 3.5–9 for 0.01 mol l-1 cesium solutions. The selectivity order was Cs > Ag, K > Na > Li for univalent ions. The response for divalent ions was not Nernstian, Cs > Ba > Ca > Cu. About two weeks after the hydration, there was a degradation of electrode performance indicated by increased detection limit and decreased slope.  相似文献   

6.
The role of divalent cations in the mechanism of pyrophosphate-activated, template-directed oligoribonucleotide ligation has been investigated. The dependence of the reaction rate on Mg2+ concentration suggests a kinetic scheme in which a Mg2+ ion must bind before ligation can proceed. Mn2+, Ca2+, Sr2+, and Ba2+ can also catalyze the reaction. Although Pb2+ and Zn2+ do not catalyze the reaction in the absence of other divalent ions, they significantly modulate the reaction rate when added in the presence of Mg2+, with Pb2+ stimulating the reaction (up to 65-fold) and Zn2+ inhibiting the reaction. The logarithm of the ligation rate increases linearly, with slope of 0.95, as a function of pH, indicating that the reaction involves a single critical deprotonation step. The ligation rates observed with the different divalent metal ion catalysts (Mn2+ > Mg2+ > Ca2+ > Sr2+ = Ba2+) vary inversely with the pKa values of their bound water molecules. The pH profile and these relative ligation rates suggest a mechanism in which a metal-bound hydroxide ion located near the ligation junction promotes catalysis, most likely by deprotonation of the hydroxl nucleophile. The effects of changing either the leaving group or the attacking hydroxyl, together with the large delta S(++) value for oligonucleotide ligation (about -20 eu), are consistent with an associative transition state.  相似文献   

7.
The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms.  相似文献   

8.
Early-stage aggregation kinetics studies of alginate-coated hematite nanoparticles in solutions containing alkaline-earth metal cations revealed enhanced aggregation rates in the presence of Ca2+, Sr2+, and Ba2+, but not with Mg2+. Transmission electron microscopy (TEM) imaging of the aggregates provided evidence that alginate gel formation was essential for enhanced aggregation to occur. Dynamic light scattering (DLS) aggregation results clearly indicated that a much lower concentration of Ba2+ compared to Ca2+ and Sr2+ was required to achieve a similar degree of enhanced aggregation in each system. To elucidate the relationship between the alginate's affinities for divalent cations and the enhanced aggregation of the alginate-coated hematite nanoparticles, atomic force microscopy (AFM) was employed to probe the interaction forces between alginate-coated hematite surfaces under the solution chemistries used for the aggregation study. Maximum adhesion forces, maximum pull-off distances, and the work of adhesion were used as indicators to gauge the alginate's affinity for the divalent cations and the resulting attractive interactions between alginate-coated hematite nanoparticles. The results showed that alginate had higher affinity for Ba2+ than either Sr2+ or Ca2+. This same trend was consistent with the cation concentrations required for comparable enhanced aggregation kinetics, suggesting that the rate of alginate gel formation controls the enhanced aggregation kinetics. An aggregation mechanism incorporating the gelation of alginate is proposed to explain the accelerated aggregate growth in the presence of Ca2+, Sr2+, and Ba2+.  相似文献   

9.
An ion chromatographic (IC) method is reported for simultaneous determination of total acidity (H+), Ba2+, Ca2+, and Mg2+ in aqueous samples. A standard ODS silica column modified by coating with n-hexadecylphosphocholine was used as the separation column. Water alone was used as the eluent, with conductivity detection of the sample ions. An excess of sodium iodide was added to each sample so that both H+ and divalent cations were always eluted with iodide as the counterion. The elution order was Ba2+, Mg2+, Ca2+, and H+ with H+ being eluted much later than the divalent cations. Acetic acid and several other weak acids could also be separated because all the protons were transposed from acetic acid (HAc) to HI by the sodium iodide. Detection limits for 100 microl injection, S/N=3 were in the low micromolar range for the divalent cations and approximately 0.3 mM for H+/I-. This method was used successfully for simultaneous determination of total acidity, magnesium and calcium in HCl-type of hot-spring water.  相似文献   

10.
"Like-charge attraction" is a phenomenon found in many biological systems containing DNA or proteins, as well as in polyelectrolyte systems of industrial importance. "Like-charge attraction" between polyanions is observed in the presence of mobile multivalent cations. At a certain limiting concentration of cations, the negatively charged macroions cease to repel each other and even an attractive force between the anions is found. With classical molecular dynamics simulations it is possible to elucidate the processes that govern the attractive behavior with atomistic resolution. As an industrially relevant example we study the interaction of negatively charged carboxylate groups of sodium polyacrylate molecules with divalent cationic Ca2+ counterions. Here we show that Ca2+ ions initially associate with single chains of polyacrylates and strongly influence sodium ion distribution; shielded polyanions approach each other and eventually "stick" together (precipitate), contrary to the assumption that precipitation is initially induced by intermolecular Ca2+ bridging.  相似文献   

11.
Recently, we have successfully constructed flat-lying DNA monolayers on a mica surface (J. Phys. Chem. B 2006, 110, 10792-10798). In this work, the effects of various factors including bridge ions, DNA species, and developing temperature on the configuration of DNA monolayers have been investigated by atomic force microscopy (AFM) in detail. AFM results show that the species of bridge ions and developing temperature play a crucial role during the formation process. For example, the divalent cation Zn2+ resulted in many DNA chains stuck side by side in the monolayers due to the strong interactions between it and DNA's bases or the mica surface. Most DNA chain's conglutinations disappeared when the developing temperature was higher than 40 degrees C. Cd2+ and Ca2+ produced more compact DNA monolayers with some obvious aggregations, especially for the DNA monolayers constructed by using Ca2+ as the bridge ion. Co2+ produced well-ordered, flat-lying DNA monolayers similar to that of Mg2+. Furthermore, it was found that the flat-lying DNA monolayers could still form on a mica surface when plasmid DNA pBR 322 and linear DNA pBR 322/Pst I were used as the DNA source. Whereas, it was hard to form DNA monolayers on a (3-aminopropyl)triethoxysilane-mica surface because the strong interactions between DNA and substrate prevented the lateral movement of DNA molecules. These results suggested that the appropriate interactions between divalent cations and DNA or mica surface were important for the formation of flat-lying DNA monolayers. The obtained information is a necessary supplement to our previous studies on the formation kinetics of such monolayers and may be useful for practical application of the monolayers and further theoretical studies.  相似文献   

12.
Artificial viruses are considered to be a promising tool in gene therapy. To find lipid-DNA complexes with high transfection efficiency but without toxicity is a fundamental aim. Although cationic lipids are frequently toxic for cells, neutral lipids are completely nontoxic. Zwitterionic lipids do not interact with DNA directly; however, the interaction can be mediated by divalent cations. Langmuir monolayers represent a well-defined model system to study the DNA-lipid complexes at the air/water interface (quasi-2D systems). In this work, isotherms, infrared reflection absorption spectroscopy (IRRAS), X-ray reflectivity (XR), grazing incidence X-ray diffraction (GIXD), and Brewster angle microscopy (BAM) measurements are used to study the interaction of calf thymus DNA with DMPE (1,2-dimyristoyl-phosphatidylethanolamine) monolayers mediated by Ca2+ or Mg2+ ions. DNA adsorption is observed only in the presence of divalent cations. At low lateral pressure, the DNA partially penetrates into the lipid monolayer but is squeezed out at high pressure. The adsorption layer has a thickness of 18-19 A. Additionally, GIXD provides information about a one-dimensional ordering of adsorbed DNA. The periodic distance between DNA strands depends on the type of the divalent cation.  相似文献   

13.
The tandem mass spectra of the divalent metal ion (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Ni2+, Co2+ and Zn2+) adducts of acetylated 1,2-trans-glycosyl sulfides, sulfoxides and sulfones were examined using low energy collision-induced dissociation on a Quattro II quadrupole tandem mass spectrometer. Abundant doubly charged ions, such as [3M + Met]2+ and [2M + Met]2+, were observed with alkaline earth metal chlorides. The other ions observed were [M + MetCl]+, [M + MetOAc]+, [M + MetO2SPh]+ and [2M + MetCl]+. The deprotonated metal adducts [M + Met-H]+ were seen only in the sulfones. The divalent metal ion adducts showed characteristic fragmentation pathways for the glycosyl sulfides, sulfoxides and sulfones, depending on the site of metal attachment. The doubly charged metal ion adducts dissociate to two singly charged ions, [M + MetOAc]+ and [M - OAc]+, in the sulfides and sulfoxides. In the sulfones, the adducts dissociate to [M + MetO2SPh]+ and [M - O2SPh]+. In contrast to the alkaline earth metals, which attach to the acetoxy functions, the transition metals attach to the sulfide and sulfoxide functions. The metal chloride adducts display characteristic fragmentation for the sulfides, sulfoxides and sulfones. The glucosyl, mannosyl and galactosyl sulfides, sulfoxides and sulfones could be differentiated on the basis of the stereochemically controlled MS/MS fragmentations of the metal chloride adducts.  相似文献   

14.
This paper reports on the structure and desorption dynamics of thin D2O ice overlayers (0.2-10 monolayers) deposited on serine- and serinephosphate- (with H+, Na+, Ca2+ counterions) terminated self-assembled monolayers (SAMs). The D2O ice overlayers are deposited on the SAMs at approximately 85 K in ultrahigh vacuum and characterized with infrared reflection absorption spectroscopy (IRAS). Reflection absorption (RA) spectra obtained at sub-monolayer D2O coverage reveal that surface modes, e.g. free dangling OD stretch, dominate on the serine SAM surface, whereas vibrational modes characteristic for bulk ice are more prominent on the serinephosphate SAMs. Temperature programmed desorption mass spectrometry (TPD-MS) and TPD-IRAS are subsequently used to investigate the energetics and the structural transitions occurring in the ice overlayer during temperature ramping. D2O ice (approximately 2.5 monolayers) on the serine SAMs undergoes a gradual change from an amorphous- to a crystalline-like phase upon increasing the substrate temperature. This transition is not as pronounced on the serine phosphate SAM most likely because of reduced mobility due to strong pinning to the surface. We show also that the energy of desorption for a sub-monolayer of D2O ice on serinephosphate SAM surfaces with a Na+ and Ca2+ counterions is equally high or even exceeds previously reported values for analogous high-energy SAMs.  相似文献   

15.
Cardiolipin (CL) plays an important role in administering the structural organization of biological membranes and therefore helps maintaining the integer membrane functionality. CL has a dimeric structure consisting of four acyl chains and two phosphate groups. With its unusual structure, the phospholipid is responsible for curvature formation in CL containing biological membranes. The acidic properties of the phosphate head groups are still not sufficiently investigated since there are controversial results in literature. The main aim of this work was to gain deeper insights into the influence of the pH on the ionization degree of CL. During the experiments, it became clear that the used ultrapure water contained traces of calcium. These unexpected calcium ions had a major impact on the behavior of CL monolayers. Therefore, the focus was put on the analysis of CL layers without and with EDTA in the subphase used to complex divalent calcium ions. For the analyses, traditional surface pressure (π) – molecular area (A) isotherm experiments combined with total reflection x-ray fluorescence (TRXF) and grazing incidence x-ray diffraction (GIXD) have been used.  相似文献   

16.
The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg(2+), Ca(2+), or Sr(2+)) or monovalent (Na(+), K(+), or Rb(+)) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na(+) > K(+) > Rb(+) shows a "reverse" lyotropic trend, while the divalent cations on the same surface exhibit a "regular" lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr(2+) > Ca(2+) > Mg(2+)). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO(-) group and the rutile, helping to "trap" the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO(-) group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.  相似文献   

17.
Su L  Sen D  Yu HZ 《The Analyst》2006,131(2):317-322
We describe a simple electrochemical protocol for studying the ion-exchange binding of non-electroactive ions, specifically mono- and divalent metal cations of biological relevance (Mg(2+), Ca(2+), and K(+)), to DNA-modified surfaces. After incubation in a dilute solution of multiply charged transition metal complex (5.0 microM [Ru(NH(3))(6)]Cl(3)), gold electrodes modified with thiolate-DNA monolayers respond to the presence of these non-electroactive metal cations by producing significant changes in the cyclic voltammograms (i.e., decrease of the integrated charge and shift of formal potential) of the surface-bound redox complex ([Ru(NH(3))(6)](3+)). The divalent cations (particularly Mg(2+)) can be detected at very low concentrations (<10 microM), while the on-set value for K(+) is substantially higher (50 mM). The equilibrium binding constants for Mg(2+) and Ca(2+) to DNA-modified surfaces were calculated.  相似文献   

18.
The self-assembled guanosine (G 1)-based hexadecamers and isoguanosine (isoG 2)-based decamers are excellent 226Ra2+ selective ionophores even in the presence of excess alkali (Na+, K+, Rb+, and Cs+) and alkaline earth (Mg2+, Ca2+, Sr2+, and Ba2+) cations over the pH range 3-11. G 1 requires additional picrate anions to provide a neutral assembly, whereas the isoG 2 assembly extracts 226Ra2+ cations without any such additives. Both G 1-picrate and isoG 2 assemblies show 226Ra2+ extraction even at a 0.35 x 10(6) fold excess of Na+, K+, Rb+, Cs+, Mg2+, or Ca2+ (10(-2) M) to 226Ra2+ (2.9 x 10(-8) M) and at a 100-fold salt to ionophore excess. In the case of the G 1-picrate assembly, more competition was observed from Sr2+ and Ba2+, as extraction of 226Ra2+ ceased at an M2+/226Ra2+ ratio of 10(6) and 10(4), respectively. With the isoG 2 assembly, 226Ra2+ extraction also occurred at a Sr2+/226Ra2+ ratio of 10(6) but ceased at a 10(6) excess of Ba2+. The results clearly demonstrate the power of molecular self-assembly for the construction of highly selective ionophores.  相似文献   

19.
Adsorption fo tertriary amine local anesthetics and Ca2+ onto lipid membranes having various negative surface charge densities was studied by measuring lipid vesicle electrophoretic mobility.

As the surface charge density of the membrane was reduced, the adsorption of the local anesthetics dominated that of the divalent cation. For a relatively high negatively charged membrane, the adsorption of both local anesthetic and Ca2+ became comparable and competitive.

It is deduced that the major factor for the adsorption of local anesthetic onto lipid membranes is due to simple physical partitioning between aqueous and membrane phases, and not due to ionic type of binding as seen for divalent cations with membranes. However, the adsorption of anesthetics is influenced by the surface potential of membranes which is in turn related to the surface concentration of local anesthetics near the membrane.

The amounts of competitive adsorption of divalent cations and local anesthetics are analyzed with respect to their bulk concentrations and various surface charge densities of the membranes. With the results of the above studies, a possible interpretation for the interaction site as well as the mode of adsorption of local anesthetics onto axon membranes is made in relation to divalent cation concentrations in the bulk phases.  相似文献   


20.
DNA interacts with insoluble monolayers made of cationic amphiphiles as well as with monolayers of zwitterionic lipids in the presence of divalent ions. Binding to dioctadecyldimethylammonium bromide (DODAB) or distearoyl-sn-glycero-3-phosphocholine (DSPC) monolayers in the presence of calcium is accompanied by monolayer expansion. For the positively charged DODAB monolayer, this causes a decrease of surface potential, while an increase is observed for the DSPC monolayers. Binding to dipalmitoyl-sn-glycero-3-phosphocholine preserves most of the liquid expanded-liquid condensed coexistence region. The liquid condensed domains adopt an elongated morphology in the presence of DNA, especially in the presence of calcium. The interaction of DNA with phospholipid monolayers is ion specific: the presence of calcium leads to a stronger interaction than magnesium and barium. These results were confirmed by bulk complexation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号