首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article is the first part of a study on flow boiling of R236fa and R245fa. This part presents pressure drop measurements obtained on a silicon multi-microchannel evaporator with 85 μm wide and 560 μm high channels separated by 46 μm wide fins. The 135 microchannels were 12.7 mm long. Dielectric refrigerants R236fa and R245fa were used as the evaporating test fluids. The inlet saturation temperature was maintained at 30.5 °C while the mass fluxes were varied from 499 to 1100 kg/m2 s and the base heat flux was tested from 130 to 1400 kW/m2. A new experimental technique was developed to measure the outlet pressure losses, which represented up to 30% of the total pressure drop and thus cannot be neglected. The microchannel pressure drop measurements were very well predicted by the method of Cioncolini et al. (2009).  相似文献   

2.
Flow boiling heat transfer coefficients of CO2 have been measured in a single microchannel. Experiments were carried out in a horizontal stainless steel tube of 0.529 mm inner diameter, for three temperatures (−10, −5 and 0 °C), with the mass flux ranging from 200 to 1200 kg/m2 s and the heat flux varying from 10 to 30 kW/m2. The investigation covered qualities from zero to the dryout inception, i.e. pre-dryout conditions. Compared to larger microchannels and positive temperatures, a higher contribution of convective boiling was found, with a larger heat transfer coefficient than for pure nucleate boiling. Mainly two heat transfer regimes were found, depending on the boiling number (Bo). For Bo > 1.1 × 10−4, the heat transfer coefficient was highly dependent on the heat flux and moderately influenced by the quality and the mass flux. For Bo < 1.1 × 10−4, the heat transfer coefficient was hardly affected by the heat flux but strongly influenced by the quality and the mass flux. In addition, dryout results were reported. The effect of the mass flux on the dryout inception quality was found to be highly dependent on the heat flux and the saturation temperature.  相似文献   

3.
An experimental study of convective boiling of refrigerants R-22, R-134a and R-404A in a 12.7 mm internal diameter, 2 m long, horizontal copper tube has been performed. Experiments involved a relatively wide range of operational conditions. Experiments were performed at the evaporating temperatures of 8°C and 15°C. Quality, mass velocity and heat flux varied in the following ranges: 5% to saturated vapor, 50–500 kg/(s m2); and 5–20 kW/m2. Effects of these physical parameters over the heat transfer coefficient have been investigated. High quality experiments were also performed up to the point of the tube surface dryout, a mechanism which was investigated from the qualitative point of view. Two heat transfer coefficient correlations from the literature have been evaluated through comparisons with experimental data. Deviations varied in the range from −25% to 42%.  相似文献   

4.
This paper reports an experimental investigation of the heat transfer performance of the new low-GWP refrigerants, R1234yf and R1234ze(E), during flow boiling heat transfer inside a horizontal high porosity copper foam with 5 Pores Per Inch (PPI). Metal foams are a class of cellular structured materials consisting of a stochastic distribution of interconnected pores; these materials have been proposed as effective solutions for heat transfer enhancement during both single and two-phase heat transfer. R1234yf and R1234ze(E) refrigerants are appealing alternatives of the more traditional R134a by virtue of their negligible values of GWP and normal boiling temperatures close to that of R134a, which make them suitable solution in several different applications, such as: refrigeration and air conditioning and electronic thermal management. This work compares the two-phase heat transfer behaviour of these new HFO refrigerants, studying the boiling process inside a porous medium and permitting to understand their effective heat transfer capabilities. The experimental measurements were carried out by imposing three different heat fluxes: 50, 75, and 100 kW m−2, at a constant saturation temperature of 30 °C; the refrigerant mass velocity was varied between 50 and 200 kg m−2 s−1, whilst the mean vapour quality varied from 0.2 to 0.95. The two-phase heat transfer and pressure drop performance of the two new HFO refrigerants is compared against that of the more traditional R134a.  相似文献   

5.
By using unique experimental techniques and carefully constructed experimental apparatus, the characteristics of flow boiling of water in microscale were investigated using a single horizontal rectangular microchannel. A polydimethylsiloxane rectangular microchannel (Dh = 103.5 and 133 μm) was fabricated by using the replica molding technique, a kind of soft lithography. A piecewise serpentine platinum microheater array on a Pyrex substrate was fabricated with the surface micromachining MEMS technique. Real time flow visualization of the phase change phenomena inside the microchannel was performed using a high speed CCD camera with microscope. The experimental local boiling heat transfer coefficients were studied, and single bubble inception, growth, and departure, as well as elongated bubble behavior were analyzed to elucidate the microscale heat transfer mechanisms. Tests were performed for mass fluxes of 77.5, 154.9, and 309.8 kg/m2 s and heat fluxes of 180–500 kW/m2. The effects of mass flux, heat flux, and vapor qualities on flow boiling heat transfer in a microchannel were studied.  相似文献   

6.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

7.
In this study, a numerical model is developed to investigate the coupled compressible gas flow and heat transfer in a microchannel surrounded by solid media. To accommodate the varying flow cross-section, the compressible gas flow model is established in a non-orthogonal curvilinear coordinate system. An iterative numerical procedure is employed to solve the coupled heat transfer and gas flow equations. The computer code for the compressible gas flow is first validated against two test problems, and then extended by including the heat conduction in the solid media. The effect of the inlet Mach number on the Nusselt number is examined. It is found that the pressure difference from the pyrolysis front to the heated surface is induced essentially by the gas addition from the channel wall, instead from the pyrolysis front. The necessity of accounting for the gas compressibility is clearly demonstrated when severe heating is applied. The pressure distribution obtained along the channel axial direction is useful for further structural analysis of composite materials.  相似文献   

8.
Interest in the use of supercomputers for the direct numerical calculation of turbulence prompts the development of efficient numerical techniques so that calculation at higher Reynolds numbers might be made. This paper presents an efficient pseudo-spectral technique, similar to but different from others that have recently appeared, for the calculation of momentum and heat transfer to a constant-property, turbulent fluid in a two-dimensional channel with walls at different, uniform temperature. The code uses no empiricism, although periodic boundary conditions are used for fluctuating quantities in the streamwise and spanwise directions. Calculations were made for a Prandtl number of 0·72 and Reynolds number based on friction velocity and channel half-height of 180 or 2800 based on channel half-height and average velocity. Calculations of mean velocity profile, turbulence intensities, skewness, flatness, Reynolds stress and eddy diffusivity of heat near a wall compare favourably with experimental results. Representative contour plots of the temperature field near the wall and of the spanwise and streamwise two-point velocity correlations are given. Deficiencies are that the calculation requires many hours on a fast computer with a large high-speed memory and that the grid size in each direction for appropriate resolution is approximately proportional to the square of the Reynolds number and to the Prandtl number raised to some power greater than one.  相似文献   

9.
The present work examines the turbulent flow in an enclosed rotor–stator system subjected to heat transfer effects. Besides their fundamental importance as three-dimensional prototype flows, such flows arise in many industrial applications but also in many geophysical and astrophysical settings. Large eddy simulations (LES) are here performed using a spectral vanishing viscosity technique. The LES results have already been favorably compared to velocity measurements in the isothermal case (Séverac, E., Poncet, S., Serre, E., Chauve, M.P., 2007. Large eddy simulation and measurements of turbulent enclosed rotor–stator flows. Phys. Fluids, 19, 085113) for a large range of Reynolds numbers 105Re=Ωb2/ν106, in an annular cavity of large aspect ratio G=(b-a)/H=5 and weak curvature parameter Rm=(b-a)/(b+a)=1.8 (a,b the inner and outer radii of the rotor and H the interdisk spacing). The purpose of this paper is to extend these previous results in the non-isothermal case using the Boussinesq approximation to take into account the buoyancy effects. Thus, the effects of thermal convection have been examined for a turbulent flow Re=106 of air in the same rotor–stator system for Rayleigh numbers up to Ra=108. These LES results provide accurate, instantaneous quantities which are of interest in understanding the physics of turbulent flows and heat transfers in an interdisk cavity. Even at high Rayleigh numbers, the structure of the iso-values of the instantaneous normal temperature gradient at the disk surfaces resembles the one of the iso-values of the tangential velocity with large spiral arms along the rotor and more thin structures along the stator. The averaged results show small effects of density variation on the mean and turbulent fields. The turbulent Prandtl number is a decreasing function of the distance to the wall with 1.4 close to the disks and about 0.3 in the outer layers. The local Nusselt number is found to be proportional to the local Reynolds number to the power 0.7. The evolution of the averaged Bolgiano length scale LB with the Rayleigh number indicates that temperature fluctuations may have a large influence on the dynamics only at the largest scales of the system for Ra107, since LB remains lower than the thermal boundary layer thicknesses.  相似文献   

10.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

11.
In this paper a new type of transient multidimensional two-fluid model has been applied to simulate intermittent or slug flow problems. Three different approaches to modelling interfacial friction, including an interfacial tracking scheme, have been investigated. The numerial method is based on an implicit finite difference scheme, solved directly in two steps applying a separate equation for the pressure. 2D predictions of Taylor bubble propagation in horizontal and inclined channels have been compared with experimental data and analytical solutions. The 2D model has also been applied to investigate a number of special phenomena in slug flow, including slug initiation, bubble turning in downflow and the bubble centring process at large liquid flow rates.  相似文献   

12.
Heat transfer enhancement from cylindrical heat sources as electronic components established at the bottom of duct with in-line arrangement and also from the bottom by electrohydrodynamic (EHD) actuator has been investigated experimentally. Air flow is drawn to the duct with various Reynolds numbers based on hydraulic diameter of inlet of the test section (Re = 0, 500, 1100, 2500 and 3870) that include natural convection (confined and unconfined cases) and forced convection (laminar and turbulent flows). Wire electrodes are arranged in transverse direction and perpendicular to the main flow with two various arrangements and high voltages are applied up to 30 kV in the wires. The results revealed that the second electrode arrangement (three wires over the ribs) is more effective due to more enhancement of heat transfer and less corona power consumption in comparison with the first one (four wires between the ribs). Also the electric field is obviously more effective for low Reynolds numbers.  相似文献   

13.
Flow visualization has been conducted in a rotating cavity, comprising two steel discs and a peripheral polycarbonate shroud, for dimensionless flow rates of air up to |Cw|8000 and rotational Reynolds number up to Reφ106. For all the experiments, the ratio of the inner to outer radii of the discs was 0.1 and the ratio of the axial clearance between the discs to their outer radii was 0.133; five different shroud geometries were tested. The flow visualization has confirmed that the flow structure comprises a source region near the shroud, laminar or turbulent Ekman layers on the discs, a sink layer near the centre of the cavity, and an interior core of rotating fluid. Above a certain flow rate, this structure was found to be unstable; heating one disc tended to stabilize the flow. For isothermal flow, measurements of the size of the source region were in good agreement with values predicted from a simple theoretical model.  相似文献   

14.
The transient wetting of a mortar sample swept by a flow of humid air is experimentally studied at temperatures of 30 and 55°C. The water content profile shape and evolution are found to be very different from those which were observed during imbibition. The boundary condition on the exposed wall of the sample is examined. A convenient evolution of the coefficient of diffusion with water content is explored. This coefficient is interpreted in terms of pure vapor diffusion, even at relatively high water contents. But its values at low water content and its temperature dependence are inconsistent. Additional explanations are then considered with the assumption that the vapor condensation in the medium is not an equilibrium process between vapor and liquid phases. The physical origin of such a nonequilibrium process is discussed. A tentative set of transfer and phase change coefficients is proposed in order to describe the experimental data by means of numerical simulation. Then, some aspects of the imbibition processes are re-examined, taking into account the consequences of a nonequilibrium condensation.Nomenclature volumic rate of phase change - D 0 coefficient of free diffusion of the water vapor in air - D hv vapor diffusion coefficient of the medium - E, E equivalent air thickness - h relative humidity of gaseous phase - h c relative humidity at the capillary condensation threshold - h a relative humidity of the flowing air - h 0 relative humidity at the air-material interface - h E equilibrium relative humidity at a given water content - J global massic flux - M molar mass of water - R gas constant - T temperature - t time - x distance from the interface - 0 total porosity - volumetric water content - h condensation coefficient (see Equation (8)) - L mass density of liquid water - vs mass density of saturated water vapor  相似文献   

15.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

16.
This investigation is concerned with predicting failure initiation sites ina butt weld joint under bending. The nonuniform load transmission characteristics through the weld metal, heat-affected zone and base material resulting from alteration in their microstructure are reflected through the macroscopic yield strength parameter. Elastic-plastic stress and strain redistribution is obtained for each increment of load increase. Analyzed in detail are the contours of constant strain energy density for determining the local and global stationary values which are assumed to be related to failure and stability of the system. Failure is predicted to initiate in the heat affected zone at the site of maximum of the minimum local strain energy density function. This corresponds to the experimental observation where cracking starts from the side of the butt joint where local stretching is maximum.  相似文献   

17.
The combined influence of heat and mass transfer has been explored in a study of peristaltic transport of magnetohydrodynamic Williamson fluid in a non‐uniform channel with flexible walls. The slip conditions are paid due attention and long wavelength and small Reynolds number assumptions are adopted in the problem formulation. The obtained results are valid for small Weissenberg number. A detailed study of involved key parameters in the obtained solutions is made by the sketched graphs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. We also evaluated the effects of particle concentration and operating temperature on the forced convective heat transfer coefficient of the nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the base fluid, ranging from 2% to 50%. Moreover, the results indicate that with increasing nanoparticles concentration and nanofluid temperature, the convective heat transfer coefficient of nanofluid increases. Our experiments revealed that in lower temperatures, the theoretical and experimental findings coincide; however, in higher temperatures and with increased concentrations of the nanoparticles in ethylene glycol, the two set of results tend to have growing discrepancies.  相似文献   

19.
In Part II of this work, the equations of thermodynamics are employed in order to derive the exact evolution equations of the fabric tensors defined in Part I (companion paper). In this regard, a thermodynamic force that is associated with the fabric tensor is defined and utilized in the derivation of the evolution equations. A special case of uniaxial tension is solved in order to illustrate the theory.We also derive specific uncoupled equations for the evolution of the length and orientation of micro-cracks. In this regard, some interesting results are obtained. It is concluded that the micro-crack length and orientation cannot evolve simultaneously for the same set of micro-cracks. However, two different sets of micro-cracks may be considered in the same RVE where in one set the micro-crack length evolves, while in the second set the micro-crack orientation evolves.  相似文献   

20.
The evolution of fabric tensors based on micro-crack distributions is formulated based on sound thermodynamic principles. In Part I of this work, the exact definition of fabric tensors based on micro-crack distributions is presented. This definition is seen to incorporate both the orientation and length of a micro-crack. In this regard, the micro-crack distribution is assumed to be radially symmetric, i.e. symmetric about a line through the origin.The equations of thermodynamics are employed in order to derive the exact evolution equations of the fabric tensors defined in the first part. In this regard, a thermodynamic force that is associated with the fabric tensor is defined and utilized in the derivation of the evolution equations. The application of the theory to the case of uniaxial tension is derived in Part II (companion paper) of this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号