共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold nanoparticles functionalized with a triarylcarbinol derivative have been used as colorimetric molecular probes for the naked-eye detection of the nerve agent simulants DCNP and DFP. The detection process is based on the compensation of charges at the surface of the nanoparticles which triggers their aggregation in solution with the resulting change in their plasmon band. 相似文献
2.
Highly selective and sensitive visualizable detection of Hg2+ based on anti-aggregation of gold nanoparticles 总被引:1,自引:0,他引:1
For the widely used gold nanoparticles (AuNPs)-based colorimetric probes, AuNPs generally change from dispersion to aggregation state accompanying with corresponding color turning from red to blue. Although colorimetric probes based on the anti-aggregation of AuNPs show exceptional selectivity and sensitivity, few examples have been reported in literature. A facile but highly sensitive and selective colorimetric probe based on the anti-aggregation of AuNPs transferred from the deactivation of aggregation agent 4,4′-dipyridyl by Hg2+ was developed in this work. This reported probe is suitable for real-time detection of Hg2+ in water with a detection limit of 3.0 ppb for Hg2+, and exhibits a selectivity toward Hg2+ by two orders of magnitude over other metal ions. The dynamic range of this probe can be conveniently tuned by adjusting the amount of 4,4′-dipyridyl used. 相似文献
3.
We have developed a simple, colorimetric and label-free gold nanoparticle (Au NP)-based probe for the detection of Pb2+ ions in aqueous solution, operating on the principle that Pb2+ ions change the ligand shell of thiosulfate (S2O32−)-passivated Au NPs. Au NPs reacted with S2O32− ions in solution to form Au+·S2O32− ligand shells on the Au NP surfaces, thereby inhibiting the access of 4-mercaptobutanol (4-MB). Surface-assisted laser desorption/ionization time-of-flight ionization mass spectrometry (SALDI-TOF MS) and inductively coupled plasma mass spectrometry (ICP-MS) measurements revealed that PbAu alloys formed on the surfaces of the Au NPs in the presence of Pb2+ ions; these alloys weakened the stability of the Au+·S2O32− ligand shells, enhancing the access of 4-MB to the Au NP surfaces and, therefore, inducing their aggregation. As a result, the surface plasmon resonance (SPR) absorption of the Au NPs red-shifted and broadened, allowing quantitation of the Pb2+ ions in the aqueous solution. This 4-MB/S2O32−-Au NP probe is highly sensitive (linear detection range: 0.5-10 nM) and selective (by at least 100-fold over other metal ions) toward Pb2+ ions. This cost-effective sensing system allows the rapid and simple determination of the concentrations of Pb2+ ions in real samples (in this case, river water, Montana soil and urine samples). 相似文献
4.
A simple colorimetric method for the determination of cysteine and homocysteine has been developed. The reaction of the azo dyes containing an aldehyde group with cysteine or homocysteine afforded very stable derivatives thiazolidines or thiazinanes under neutral pH conditions. The method is selective and sensitive for cysteine and homocysteine detection without the interference of other amino acids. Importantly, the recognition of Cys and Hcy could be observed by naked eyes. 相似文献
5.
Yasaman-Sadat Borghei Morteza Hosseini Mehdi Dadmehr Saman Hosseinkhani Mohammad Reza Ganjali Reza Sheikhnejad 《Analytica chimica acta》2016
A simple but highly sensitive colorimetric method was developed to detect cancer cells based on aptamer–cell interaction. Cancer cells were able to capture nucleolin aptamers (AS 1411) through affinity interaction between AS 1411 and nucleolin receptors that are over expressed in cancer cells, The specific binding of AS 1411 to the target cells triggered the removal of aptamers from the solution. Therefore no aptamer remained in the solution to hybridize with complementary ssDNA-AuNP probes as a result the solution color is red. In the absence of target cells or the presence of normal cells, ssDNA-AuNP probes and aptamers were coexisted in solution and the aptamers assembled DNA-AuNPs, produced a purple solution. UV–vis spectrometry demonstrated that this hybridization-based method exhibited selective colorimetric responses to the presence or absence of target cells, which is detectable with naked eye. The linear response for MCF-7 cells in a concentration range from 10 to 105 cells was obtained with a detection limit of 10 cells. The proposed method could be extended to detect other cells and showed potential applications in cancer cell detection and early cancer diagnosis. 相似文献
6.
Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe 总被引:2,自引:0,他引:2
We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg2+) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact
differently with short single-strand DNA and double-stranded DNA. The anti-Hg2+ aptamer is rich in thymine (T) and readily forms T–Hg2+–T configuration in the presence of Hg2+. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg2+-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear
response toward Hg2+ concentration through a five-decade range of 1 × 10−4 mol L−1 to 1 × 10−9 mol L−1. Even with the naked eye, we could identify micromolar Hg2+ concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range
(0.6 nM). The assay shows excellent selectivity for Hg2+ over other metal cations including K+, Ba2+, Ni2+, Pb2+, Cu2+, Cd2+, Mg2+, Ca2+, Zn2+, Al3+, and Fe3+. The major advantages of this Hg2+ assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially
useful tool for the Hg2+ detection. 相似文献
7.
A new method has been proposed to realize the visual detection of D-amino acids(DAAs) via the antiaggregation of 4-mercaptobenzoic acid modified gold nanoparticles(AuNPs) in the presence of D-amino acid oxidase(DAAO). The negatively charged AuNPs were prepared using sodium citrate as a reducer and stabilizer. The presence of 4-mercaptobenzoic acid(4-MBA) and Cu2+induces the aggregation of AuNPs,resulting in a color change from ruby red to royal purple. However, DAAO could oxidize DAAs to generate H2O2. In the presence of H2O2, the mercapto(–SH) group in 4-mercaptobenzoic acid can be oxidized to form a disulfide(–S–S–) bond. Based on these facts, the pre-incubation of DAAs and 4-mercaptobenzoic acid with DAAO would significantly reduce the concentration of free 4-mercaptobenzoic acid molecules,thus the aggregation of AuNPs was interrupted since due to the lack of inducer. As the concentration of DAAs increases, the color of the AuNPs solution would progress from royal purple to ruby red.Consequently, DAAs could be monitored by the colorimetric response of AuNPs using a UV–vis spectrophotometer or even naked eyes. This DAAO mediated visual detection method could determine Dalanine(D-Ala) as a representative DAA with concentrations ranging from 1.5×10~(-7)mol L~(-1) to 3.0×10~(-5)mol L~(-1), and the detection limit was as low as 7.5×10~(-8)mol L~(-1). The proposed method is convenient, low-cost and free of complex equipment, making it feasible to analyze the concentration of D-Ala in real samples of b-amyloid peptide(Aβ1–42). 相似文献
8.
A simple protocol to distinguish enantiomers is extremely intriguing and useful. In this study, we propose a low-cost, facile, sensitive method for visual chiral recognition of enantimers. It is based on the inherent chirality of gold nanoparticles (AuNPs), and the unmodified AuNPs are used as chiral selector for d- and l-Tryptophan (Trp). In the presence of d-Trp, an appreciable red-to-blue color change of AuNPs solution can be observed, whereas no color change is found in the presence of l-Trp. The method can be used to detect d-Trp in the range of 0.2–10 μM, and the limit of detection is 0.1 μM. The chiral assay described in this work is easily readout with the naked eye or using a UV-vis spectrometer. Furthermore, the AuNPs can selectively adsorb d-Trp, and simple centrifugation can allow the precipitation of d-Trp with AuNPs and leave a net excess of the other enantiomer in solution, thus resulting in enantioseparation. In this method, AuNPs do not need any labeling or modifying with chiral molecules. The method is more attractive because of its high sensitivity, low cost, ready availability and simple manipulation. 相似文献
9.
A simple, rapid, sensitive and field-portable colorimetric technique for the determination of Cr(III) in aqueous solution based on an aggregation-induced color transition of gold nanoparticles (AuNPs) has been developed. AuNPs were first functionalized with a dithiocarbamate-modified N-benzyl-4-(pyridin-4-ylmethyl)aniline ligand (BP-DTC). Chelation of Cr(III) by several of these ligands, bound to different nanoparticles, led to nanoparticle aggregation in solution. This gave rise to a color change from wine-red to blue that was discernible by the naked eye and an easily measurable alteration in the extinction spectrum of the particles. The method could be used to determine Cr(III) with a detection limit of 31 ppb. Furthermore, selective detection of trace Cr(III) in aqueous solution in the presence of 12 other transition metal ions has been achieved. Toward the goal of practical applications, the sensor has been further evaluated with a view to monitoring Cr(III) in nutritional supplements and the blood of diabetes patients and also applied in the indirect determination of Cr(VI) in waste water. 相似文献
10.
A new convenient colorimetric sensor for fructose based on anti-aggregation of citrate-capped gold nanoparticles(Au NPs) is presented. 4-Mercaptophenylboronic acid(MPBA) induces the aggregation of Au NPs, leading to a color change from red to blue. Fructose as a potent competitor has strong affinity for MPBA and a borate ester is formed between MPBA and fructose. There is an obvious color change from blue to red with increasing the concentration of fructose. The anti-aggregation effect of fructose on Au NPs was seen by the naked eye and monitored by UV–vis spectra. Our results showed that the absorbance ratio(A_(519)/A_(640)) was linear with fructose concentration in the range of 0.032–0.96 μmol/L(R~2= 0.996), with a low detection limit of 0.01 μmol/L(S/N = 3). Notably, a highly selective recognition of fructose was shown against other monosaccharide and disaccharide(glucose, mannose, galactose,lactose and saccharose). With anti-aggregation assays higher selectivity is achievable. The results of this work provide a rapid method for evaluating the quantitative analysis of fructose in human plasma at physiologically meaningful concentrations and at neutral pH. The proposed procedure can be used as an efficient method for the precise and accurate determination of fructose. 相似文献
11.
《中国化学快报》2021,32(9):2807-2811
As an important component of the atmosphere, ammonia (NH3) plays a very important role in maintaining the balance of environment. However, it is also one of the most toxic gases that can cause damage to the human respiratory system and mucous membranes even at low concentrations. As such, development of highly sensitive and selective NH3 sensors is of high significance for environmental monitoring and health maintenance. Herein, we have synthesized Au@Ag@AgCl core-shell nanoparticles (NPs) by oxidative etching and precipitating Au@Ag core-shell NPs using FeCl3 and further used them as optical probes for the colorimetric detection of NH3. The sensing mechanism is based on the fact that the etching of NH3 on AgCl and Ag shell leads to the variations of ingredients and core-to-shell ratio of the Au@Ag@AgCl NPs, thereby inducing noticeable spectral and color changes. By replacing the outmost layer of Ag with AgCl, not only is the stability of the sensor against oxygen significantly enhanced, but also is the sensitivity of the method improved. The method exhibits good linear relationship for the detection of NH3 from 0 to 5000 μmol/L with the limit of detection of 6.4 μmol/L. This method was successfully applied to the detection of simulated air polluted by NH3, indicating its practical applicability for environmental monitoring. This method shows great potential for on-site NH3 detection particularly in remote area, where a simple, fast, low-cost, and easy-to-handle method is highly desirable. 相似文献
12.
Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs’ shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV–vis spectra of AuNPs are changed. We employed the digital mapping approach to analyze the spectral variations with statistical and chemometric methods, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The proposed array could successfully differentiate biological molecules (e.g., cysteine, glutathione and glutathione disulfide) from other potential interferences such as amino acids in the concentration range of 10–800 μmol L−1. 相似文献
13.
Ziqing Weng Hongbin Wang Jitraporn Vongsvivut Runqing Li Alexey M. Glushenkov Jin He Ying Chen Colin J. Barrow Wenrong Yang 《Analytica chimica acta》2013
Molecule-coated nanoparticles are hybrid materials which can be engineered with novel properties. The molecular coating of metal nanoparticles can provide chemical functionality, enabling assembly of the nanoparticles that are important for applications, such as biosensing devices. Herein, we report a new self-assembly of core-satellite gold nanoparticles linked by a simple amino acid l-Cysteine for biosensing of Cu2+. The plasmonic properties of core-satellite nano-assemblies were investigated, a new red shifted absorbance peak from about 600 to 800 nm was found, with specific wavelength depending on ratios with assembly of large and small gold nanoparticles. The spectral features obtained using surface-enhanced Raman spectroscopy (SERS) provided strong evidence for the assembly of the Cu2+ ions to the L-Cysteine molecules leading to the successful formation of the core-satellite Cu(l-Cysteine) complex on the gold surfaces. In addition, a linear relationship between the concentration of mediating Cu2+ and absorbance of self-assembled gold nanoparticles (GNPs) at 680 nm was obtained. These results strongly address the potential strategy for applying the functionalized GNPs as novel biosensing tools in trace detections of certain metal ions. 相似文献
14.
Zhengbo Chen Yanqin Huang Xiaoxiao Li Tong Zhou He Ma Hong Qiang Yifei Liu 《Analytica chimica acta》2013
Herein, a simple and novel colorimetric method for detection of potassium ions (K+) was developed. The colorimetric experiments revealed that upon the addition of K+, the conformation of anti-K+ aptamer in solution changed from random coil structure to compact rigid G-quadruplex one. This compact rigid G-quadruplex structure could not protect AuNPs against K+-induced aggregation, and thus the visible color change from wine-red to blue-purple could be observed by the naked eye. The linear range of the colorimetric aptasensor covered a large variation of K+ concentration from 5 nM to 1 μM and the detection limit of 5 nM was obtained. Moreover, this assay was able to detect K+ with high selectivity and had great potential applications. 相似文献
15.
This study found that 1,2-ethylenediamine (EDA) as a primary amine could be modified onto the surface of citrate-stabilized gold nanoparticles (Au NPs), and the EDA-capped Au NPs were successfully used as an ultrasensitive optical probe for TNT detection. The strong donor–acceptor (D–A) interactions between EDA and trinitrotoluene (TNT) at the Au NP/solution interface induced significant aggregation of the EDA-capped Au NPs, and enabled to easily realize the direct colorimetric detection of ultratrace TNT. The results showed that such a color change was readily seen by the naked eye, and the colorimetric detection could be down to 400 pM level of TNT with excellent discrimination against other nitro compounds. UV–vis absorption spectroscopy was used to examine the TNT-induced changes in local surface plasmon resonance (LSPR) of EDA-capped Au NPs, and a new LSPR band at ca. 630 nm arose along with the addition of TNT, which produced a detection limit of TNT down to ca. 40 pM. Furthermore, dynamic light scattering measurements evidenced the ultratrace TNT-induced small changes in the size of the EDA-capped Au NPs, and realized the quick and accurate detection of TNT in 0.4 pM level. These results demonstrated the ultrahigh sensitivity of this optical probe for TNT detection. Moreover, this optical probe is sample, stable, low-cost, and these excellent properties make it quite promising for infield and rapid detection of TNT. 相似文献
16.
An electroosmotic flow (EOF)-switchable poly(dimethylsiloxane) (PDMS) microfluidic channel modified with cysteine has been developed. The native PDMS channel was coated with poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles by layer-by-layer technique was assembled on PDDA to immobilize cysteine. The assembly was followed by infrared spectroscopy/attenuated total reflection method, contact angle, EOF measurements and electrophoretic separation methods. EOF of this channel can be reversibly switched by varying the pH of running buffer. At low pH, the surface of channels is positively charged, EOF is from cathode to anode. At high pH, the surface is negatively charged, EOF is from anode to cathode. At pH 5.0, near the isoelectric point of the chemisorbed cysteine, the surfaces of channels show neutral. When pH is above 6.0 or below 4.0, the magnitude of EOF varies in a narrow range. And the modified channel surface displayed high reproducibility and good stability, a good reversibility of cathodic-anodic EOF transition under the different pH conditions was observed. Separation of dopamine and epinephrine as well as arginine and histidine were performed on the modified chip. 相似文献
17.
Ting Li Jiefang Sun Jinyuan Liu Baolei Dong Huachao Zhao Xiaoting Qiao Wencong Shan Jing Zhang Bing Shao 《中国化学快报》2020,31(2):439-442
Here,a new designed core/satellite gold nanoprobe was developed for detecting trace mount of benzoyl peroxide(BPO) based on its deboronation.This gold nanoassembly(the BE-Au NPs12/65) wa s constructed via borate ester formation between large 4-mercaptophenylboronic acid(MPBA) modified Au NPs(the MPBAAu NPs65,as cores) and small dopamine modified AuNPs(the D PA-AuNPs12,as satellites).Particularly,upon addition of BPO,it would trigger the deboronation for the BE-AuNPs12/65 probes accompanying with distinct color changes from blue,purple to wine red,which implied the disassembly of the core/satellite nanostructure after the breakage of carbon to boron chemical bond.By measuring the absorbance ratio at 665 nm and 545 nm,quantification of BPO was achieved in the range of 10.0-100.0 nmol/L,which could also be easily observed by naked eyes.The nanoprobe utilized a boronate deprotection mechanism and the LSPR properties of Au NPs to provide high selectivity for detecting BPO over similar ROS/RNS with the limit of detection as low as 7.2 nmol/L.The practical applicability of this assay was verified through successful determining BPO in flour samples,which demonstrated its great potentials in food safety field. 相似文献
18.
Laura Anfossi Claudio Baggiani Cristina Giovannoli Gianfranco Giraudi 《Analytical and bioanalytical chemistry》2009,394(2):507-512
A sensitive homogeneous immunoassay, using human serum albumin (HSA) as a model analyte coupled with simple visible absorption detection, has been developed. The new assay is based on the use of gold nanoparticles functionalized with the target protein, which compete with the analyte for the binding of a specific polyclonal antibody. The binding of antibodies to the functionalized nanoparticles determines a shift of the visible absorption maximum of the gold colloid, and quantification of the analyte could be obtained as the competitive inhibition of the binding of antibodies to the nanoparticles. The proposed immunoassay has been optimized and successfully applied to measuring HSA in human urine samples, in which results agreed well with those obtained by a nephelometric reference method. 相似文献
19.
A novel, quantitative analytical method for measuring C-reactive protein (CRP) levels in human serum has been developed based on the catalytic activity of gold nanoparticles (GNPs) and luminol-H2O2 chemiluminescence (CL). The CL intensity in the presence of CRP and its ligand, O-phosphorylethanolamine (PEA), was greatly enhanced due to the aggregation of GNPs after the addition of 0.5 M NaCl. Any pretreatment steps, such as covalent functionalization of GNPs, addition of antibodies, or labeling of CRP, were not needed for CL detection. The CL enhancement was linearly proportional to CRP concentration in the range of 1.88 fM to 1.925 pM. The detection limit of CRP in serum samples was estimated to be as low as 1.88 fM. The detection sensitivity was increased more than 164 times of magnitude over that of the conventional, enzyme-linked immunosorbent assay (ELISA) method. This proposed GNP-based CL detection method offers the advantages of simplicity, rapidity, and sensitivity. 相似文献
20.
Ju A La Sora Lim Hyo Jeong Park Min-Ji Heo Byoung-In Sang Min-Kyu Oh Eun Chul Cho 《Analytica chimica acta》2016
We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. 相似文献