首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Formation of aqueous secondary organic aerosol (aqSOA) at the air – liquid interface recently has attracted a lot of attention in atmospheric chemistry. The discrepancies in mass distributions, aerosol oxidative capacity, liquid water content, hygroscopic growth of aerosols, and formation of clouds and fogs suggest that interfacial chemistry play a more important role than previously deemed. However, detailed mechanisms at the air–water interface remain unclear owing to the lack of comprehensive understanding that underpins complicated interfacial phenomena, which are not easily measurable from field campaigns, laboratory measurements, or computational simulations. This review highlights relevant and recent technical advancement employed to study aqSOA encompassing spectroscopy and mass spectrometry. The current knowledge on the aqSOA processes is digested with an emphasis on recent research of interfacial aqSOA formation including laboratory studies and model simulations. Finally, future directions of the interfacial chemistry are recommended for field and laboratory studies as well as theoretical efforts to resolve interfacial challenges in atmospheric chemistry.  相似文献   

3.
Photosensitization reactions are believed to provide a key contribution to the overall oxidation chemistry of the Earth''s atmosphere. Generally, these processes take place on the surface of aqueous aerosols, where organic surfactants accumulate and react, either directly or indirectly, with the activated photosensitizer. However, the mechanisms involved in these important interfacial phenomena are still poorly known. This work sheds light on the reaction mechanisms of the photosensitizer imidazole-2-carboxaldehyde through ab initio (QM/MM) molecular dynamics simulations and high-level ab initio calculations. The nature of the lowest excited states of the system (singlets and triplets) is described in detail for the first time in the gas phase, in bulk water, and at the air–water interface, and possible intersystem crossing mechanisms leading to the reactive triplet state are analyzed. Moreover, the reactive triplet state is shown to be unstable at the air–water surface in a pure water aerosol. The combination of this finding with the results obtained for simple surfactant-photosensitizer models, together with experimental data from the literature, suggests that photosensitization reactions assisted by imidazole-2-carboxaldehyde at the surface of aqueous droplets can only occur in the presence of surfactant species, such as fatty acids, that stabilize the photoactivated triplet at the interface. These findings should help the interpretation of field measurements and the design of new laboratory experiments to better understand atmospheric photosensitization processes.

First-principles molecular dynamics simulations of imidazole-2-carboxaldehyde at the air–water interface highlight the role of surfactants in stabilising the reactive triplet state involved in photosensitisation reactions in aqueous aerosols.  相似文献   

4.
Isoprene is the most abundant volatile organic compound in the atmosphere after methane. While gas-phase processes have been widely studied, the chemistry of isoprene in aqueous environments is less well known. Nevertheless, some experiments have reported unexpected reactivity at the air-water interface. In this work, we have carried out combined quantum-classical molecular dynamics simulations of isoprene at the air-water interface, as well as ab initio and density functional theory calculations on isoprene-water complexes. We report the first calculation of the thermodynamics of adsorption of isoprene at the water surface, examine how hydration influences its electronic properties and reactivity indices, and estimate the OH-initiated oxidation rate. Our study indicates that isoprene interacts with the water surface mainly through H−π bonding. This primary interaction mode produces strong fluctuations of the π and π* bond stabilities, and therefore of isoprene's chemical potential, nucleophilicity and ionization potential, anticipating significant dynamical effects on its reactivity at the air-water interface. Using data from the literature and free energies reported in our work, we have estimated the rate of the OH-initiated oxidation process at the air-water interface (5.0×1012 molecule cm−3 s−1) to be about 7 orders of magnitude larger than the corresponding rate in the gas phase (8.2×105 molecule cm−3 s−1). Atmospheric implications of this result are discussed.  相似文献   

5.
The effect of kinetics of chemical reactions in the gas-liquid interface between atmospheric gases and reactive solute in dilute aqueous aerosols is analysed in order to see if such processes will affect the overall uptake rate. Accordingly, a parameterization of such heterogeneous reactions was derived, taking into account interfacial reactions. Gibbs surface excess concentration of both reactive compounds and stable compounds leads to higher heterogeneous reaction rates in comparison to aqueous phase bulk reactions. An analytical formulation shows that the surface reactions may be of considerable importance for the uptake process in the case of small liquid aerosols even in the absence of organic film on the surface. In particular, we demonstrate that the uptake rate of atmospheric gas-phase oxidants (such as OH, NO(3) or O(3)) reacting with volatile organic compounds (such as ethanol or methanol) is increased by more than 10% for atmospheric aerosols with diameters lower than 0.1 microm. This effect is in addition intensified in the case of reactions of atmospheric oxidants with liquid aerosols containing organic surfactants, such as semi-volatile organic compounds, i.e., the chemical reactions at the gas-liquid interface may be dominant in the main uptake process for atmospheric submicron aerosols.  相似文献   

6.
The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.  相似文献   

7.
Aqueous aerosols and other water surfaces in the environment may be coated with organic films, which can give rise to significant effects on gas-solution transport and surface reactivity. We have used acridine as a molecular fluorescent pH probe to examine the hydration of nitric acid and ammonia at both the uncoated and the organic-coated air-water interface. For uncoated samples, a transient decrease in pH is observed at the interface upon introduction of nitric acid vapour, followed by a relaxation to a final pH which is lower than the initial value. This long-time final change in pH is also measured in bulk pH measurements. Solutions having monolayer and sub-monolayer films of 1-octanol do not display the transient, but do show the same long-time change in pH. The degree of suppression of the surface pH transient depends directly on the amount of octanol present at the surface. Hydrolysis of ammonia at the water surface is also indicated by a surface pH transient which is also suppressed when a monolayer of octanol is present at the surface. Monolayers of butanol and of uncompressed stearic acid at the surface show little difference from the clean interface. The results are related to the concentration of available water at the interface.  相似文献   

8.
Georganopoulou DG  Caruana DJ  Strutwolf J  Williams DE 《Faraday discussions》2000,(116):109-18; duscussion 171-90
In order to establish an experimental basis for exploring the reactivity of membrane-bound redox enzymes using electrochemistry at an organic/aqueous interface, the reactivity of glucose oxidase adsorbed at the dichloroethane/water interface has been studied. Turnover of glucose in the aqueous phase mediated by dimethyl ferricenium electrogenerated in the organic phase was measured by measuring the feedback current caused by recycling the mediator as the generator electrode approached close to the interface from the organic side. An unexpected self-exchange reaction of the ferrocene at the interface was suppressed by adsorption of a surfactant. The interfacial enzyme reaction could be distinguished from reaction within the bulk of the aqueous phase. Reaction within a protein-surfactant film formed at the interface is conjectured.  相似文献   

9.
10.
A comprehensive study of free energy landscapes and mechanisms of COS-mediated polymerization of glycine via N-carboxy anhydrides (NCAs, "Leuchs anhydrides") and peptide hydrolysis at the water-pyrite interface at extreme thermodynamic conditions is presented. Particular emphasis is set on the catalytic effects of the mineral surface including the putative role of the ubiquitous sulfur vacancy defects. It is found that the mere presence of a surface is able to change the free energetics of the elementary reaction steps. This effect can be understood in terms of a reduction of entropic contributions to the reactant state by immobilizing the reactants and/or screening them from bulk water in a purely geometric ("steric") sense. Additionally, the pyrite directly participates chemically in some of the reaction steps, thus changing the reaction mechanism qualitatively compared to the situation in bulk water. First, the adsorption of reactants on the surface can preform a product-like structure due to immobilizing and scaffolding them appropriately. Second, pyrite can act as a proton acceptor, thus replacing water in this role. Third, sulfur vacancies are found to increase the reactivity of the surface. The finding that the presence of pyrite speeds up the rate-determining step in the formation of peptides with respect to the situation in bulk solvent while stabilizing the produced peptide against hydrolysis is of particular interest to the hypothesis of prebiotic peptide formation at hydrothermal aqueous conditions. Apart from these implications, the generality of the studied organic reactions are of immediate relevance to many fields such as (bio)geochemistry, biomineralization, and environmental chemistry.  相似文献   

11.
This paper reports on molecular dynamics simulations of two hydrated micelles composed of C12E6 and LDAO surfactants. The simulations results provide a quantitative picture of the dynamics of the hydration water at the water/micelle interface. Both the residence time of water near the micelle surface and its retardation with respect to the bulk have been estimated. It is found that the water dynamics is radically different for the two micellar systems and depends on the physical nature of the micelle surface in contact with water. For C12E6 this interface is thicker and presents a stronger hydrophilic character than that of LDAO. Thus, in C12E6, surface water dynamics is 1-2 orders of magnitude slower than that of bulk water, compared with only 18% for the LDAO system. The simulations have also revealed the nature of the rotational landscape experienced by water at the micellar surface: In the C12E6 micelle water rotation occurs in a highly anisotropic space due to confinement of waters at the interface; in LDAO the rotational landscape is instead isotropic. These findings clearly indicate that the slowdown of interfacial water relaxation near complex micelles depends, case by case, on the structural properties of the interface itself, such as the ratio between hydrophobic/hydrophilic exposed regions and on the interface thickness and topography.  相似文献   

12.
With a molecular dynamics computer simulation we investigated the dynamic properties of a monododecyl pentaethylene glycol (C12E5) molecule adsorbed at air/water and oil/water interfaces. In these simulations we investigated the molecular orientation of the surfactant molecules in detail. At the air/water interface the maximum of the C12 chain tilt angle distribution measured with respect to the water surface is about 50°. This result is in fairly good agreement with neutron reflection experiments of monododecyl glycol ethers at the air/water interface. At the oil/water interface no significant changes were detected in the molecular orientation. We found that at equilibrium oil molecules penetrate into the hydrophobic monododecyl layer, this was also found by neutron reflection studies of the interactions between C12E5 and dodecane. The observed oil penetration results in an increase in the surface area per surfactant molecule. Received: 16 July 1999/Accepted in revised form: 28 August 1999  相似文献   

13.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

14.
15.
Criegee intermediates have implications as key intermediates in atmospheric, organic, and enzymatic reactions. However, their chemistry in aqueous environments is relatively unexplored. Herein, Born–Oppenheimer molecular dynamics (BOMD) simulations examine the dynamic behavior of syn ‐ and anti ‐CH3CHOO at the air–water interface. They show that unlike the simplest Criegee intermediate (CH2OO), both syn ‐ and anti ‐CH3CHOO remain inert towards reaction with water. The unexpected high stability of C2 Criegee intermediates is due to the presence of a hydrophobic methyl substituent on the Criegee carbon that lowers the proton transfer ability and inhibits the formation of a pre‐reaction complex for the Criegee–water reaction. The simulation of the larger Criegee intermediates, (CH3)2COO, syn ‐ and anti ‐CH2C(CH3)C(H)OO on the water droplet surface suggests that strongly hydrophobic substituents determine the reactivity of Criegee intermediates at the air–water interface.  相似文献   

16.
The structure of water at aqueous interfaces is of the utmost importance in biology, chemistry, and geology. We use neutron reflectivity and quartz crystal microbalance to probe an interface between hydrophilic quartz and bulk liquid solutions of H2O/D2O mixtures. We find that near the interface the neutron scattering length density is larger than in the bulk solution and there is an excess adsorbed mass. We interpret this as showing that there is a region adjacent to the quartz that is enriched in D2O and extends 5-10 nm into the solution. This suggests caution when interpreting results where D2O is substituted for H2O in aqueous interfacial chemistry.  相似文献   

17.
Unique interface reactions at the surface of sea-salt particles have been suggested as an important source of photolyzable gas-phase halogen species in the troposphere. Many factors influence the relative importance of interface chemistry compared to aqueous-phase chemistry. The Model of Aerosol, Gas, and Interfacial Chemistry (MAGIC 2.0) is used to study the influence of interface reactions on gas-phase molecular halogen production from pure NaCl and NaBr aerosols. The main focus is to identify the relative importance of bulk compared to interface chemistry and to determine when interface chemistry dominates. Results show that the interface process involving Cl-(surf) and OH(g) is the main source of Cl2(g). For the analogous oxidation of bromide by OH, gaseous Br2 is formed mainly in the bulk aqueous phase and transferred across the interface. However, the reaction of Br-(surf) with O3(g) at the interface is the primary source of Br2(g) under dark conditions. The effect of aerosol size is also studied. Potential atmospheric implications and effects of interface processes on aerosol pH are discussed.  相似文献   

18.
It has been generally accepted that there are significant quadrupolar and bulk contributions to the second-harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena: the breaking of the macroscopic Kleinman symmetry and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because the sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of the breaking of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well.  相似文献   

19.
The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature.  相似文献   

20.
Molecular features of the air/carbonate solution interface   总被引:1,自引:0,他引:1  
The nature of the air/carbonate solution interface is considered with respect to water structure by sum-frequency vibrational spectroscopy (SFVS) and molecular dynamics simulations (MDS). Results from this study provide further understating regarding previous observations that the surface tensions of structure making sodium carbonate solutions have been shown to be significantly greater than the surface tensions of structure breaking bicarbonate solutions at equivalent concentrations. This difference in surface tension and its variation with salt concentration is related to the organization of water and ions at the air/solution interface. Spectral results from SFVS show at equivalent concentrations that, for the carbonate solution, the strong water structure signal of 3200 cm(-1) at the air/carbonate solution interface is increased by a factor of 4 when compared to the same signal for the air/bicarbonate solution interface, which spectrum is weaker than the spectrum for the air/water interface in the absence of salt. These results from SFVS are explained by the results from MDS which show that in the case of carbonate solutions the structure making carbonate ions are excluded from the interfacial water region which region is extended in depth. On the other hand, in the case of bicarbonate solutions, the bicarbonate ions are accommodated in the interfacial water region and there is no evidence of an increase in the extent of water structure. These SFVS experimental and MD simulation results provide further information to understand interfacial phenomena of soluble salts at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号