首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanometric bilayer-based self-assembled micelles commonly named as bicelles, formed with a mixture of long and short chains phosphatidylcholine lipids (PC), are known to orient spontaneously in a magnetic field. This field-induced orientational order strongly depends on the molecular structure of the phospholipids. Using small-angle X-ray scattering (SAXS), we performed detailed structural studies of bicelles and investigated the orientation/relaxation kinetics in three different systems: saturated-chain lipid bicelles made of DMPC (dimyristoyl PC)/DCPC (1,2-dicaproyl PC) with and without the added paramagnetic lanthanide ions Eu(3+), as well as bicelles of TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC)/DCPC. The structural study confirmed the previous NMR studies, which showed that DMPC bicelles orient with the membrane normal perpendicular (defined here as "nematic" orientation) to the magnetic field, whereas they orient parallel (defined here as "smectic" orientation) to the magnetic field in the presence of Eu(3+). The TBBPC bicelles also show smectic orientation. Surprisingly, the orientational order induced in the magnetic field remains even after the magnetic field is removed, which allowed us to investigate the orientation and relaxation kinetics of different bicelle structures. We demonstrate that this kinetics is very different for all three types of bicelles at the same lipid concentration; DMPC bicelles (~40 nm diameter) with and without Eu(3+) orient faster than TBBPC bicelles (~80 nm diameter). However, for the relaxation, DMPC bicelles (nematic) lose their macroscopic orientation only after one hour, whereas both DMPC bicelles with Eu(3+) and TBBPC bicelles (smectic) remarkably stay oriented for up to several days! These results indicate that the orientation mechanism of these nanometric disks in the magnetic field is governed by their size, with smaller bicelles orienting faster than the larger bicelles. Their relaxation mechanism outside the magnetic field, however, is governed by the degree of ordering. Indeed, the angular distribution of oriented bicelles is much narrower for the bicelles with smectic orientation, and, consequently, they keep aligned for much longer time (days) than those with nematic ordering (hours) outside the magnetic field. The understanding of the orientation/relaxation kinetics, as well as the morphologies of these "molecular goniometers" at molecular and supramolecular levels, allows controlling such an unprecedented long-range and long-lived smectic ordering of nanodisks and opens a wide field of applications for structural biology or material sciences.  相似文献   

2.
Mills JO  Holland LA 《Electrophoresis》2004,25(9):1237-1242
Electrokinetic capillary chromatography is applied to determine the membrane affinity of peptides using both 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micelles and DHPC/1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bicelles under controlled conditions. The effect of temperature and the bicelle q value in surface association with cationic peptides is studied. The cationic peptides selected have a well-defined membrane structure (indolicidin), induced secondary structure (melittin, magainin 2), or do not possess classical secondary structure (atrial natriuretic peptide (ANP) 1-28, 4-28, 5-27). Electrokinetic capillary chromatography facilitated by DMPC and DHPC additives provides a rapid means of estimating lipophilicity and screening for peptides that have membrane affinity.  相似文献   

3.
We report the utilization of magnetically aligned phospholipid bilayers (bicelles) to study the effects of cholesterol in phospholipid bilayers for both chain perdeuterated DMPC and partially deuterated alpha-[2,2,3,4,4,6-d(6)]-cholesterol using (2)H solid-state NMR spectroscopy. The quadrupolar splittings at 40 degrees C were 25.5 and 37.7 kHz, respectively, for the 2,4-(2)H(eq) and 2,4-(2)H(ax) deuterons when the bilayer normal of the discs was aligned perpendicular to the static magnetic field. The quadrupolar splittings were doubled when Yb(3+) ions were added to flip the bicelles 90 degrees such that the bilayer normal was colinear with the magnetic field. The results suggest that cholesterol is incorporated into the bicelle discs. For chain perdeuterated DMPC-d(54), incorporated into DMPC-DHPC bicelle discs, the individual quadrupolar splittings of the methylene and methyl groups doubled on going from the perpendicular to the parallel alignment. Also, the presence of cholesterol increased the overall ordering of the acyl chains of the phospholipids. S(CD) (i) calculations were extracted directly from the (2)H quadrupolar splittings of the chain perdeuterated DMPC. The order parameter, S(CD) (i), calculations clearly indicated an overall degree of ordering of the acyl chains in the presence of cholesterol. We also noted a disordering effect at higher temperatures. This study demonstrates the ease with which (2)H order parameters can be calculated utilizing magnetically aligned phospholipid bilayers when compared with randomly dispersed membrane samples.  相似文献   

4.
X Wu  TJ Langan  BC Durney  LA Holland 《Electrophoresis》2012,33(17):2674-2681
Aqueous phospholipid preparations comprised of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) are prevalent materials for biological characterization and become gel-like near physiological temperature, but have a low viscosity below 24°C. The rheology of 20% phospholipid preparations of [DMPC]/[DHPC] = 2.5 reveals that, under conditions utilized for fluid steering, the materials are shear-thinning power-law fluids with a power-law index ranging from 0.30 through 0.90. Phospholipid preparations are utilized to steer fluids in microfluidic chips and support hydrodynamic delivery of sample across a double T injection region in a chip. The fact that the phospholipids are fully integrated as a valving material as well as a separation medium is demonstrated through the separation of linear oligosaccharides labeled with 1-aminopyrene-3,6,8-trisulfonic acid.  相似文献   

5.
Nearest-neighbor recognition experiments have been carried out using varying ratios of exchangeable dimer analogs of 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol and 1,2-distearoyl-sn-glycero-3-phosphatidylglycerol in cholesterol-rich unilamellar vesicles at 60 degrees C. Equilibrium dimer distributions that were obtained support a structural model of the liquid-ordered bilayer in which free cholesterol and the longer-chain phospholipid homodimer are in equilibrium with a complex of unique stoichiometry, where one cholesterol molecule combines with two of the long-chain phospholipid homodimers. In this model, the mixing of the short-chain phospholipids with the uncomplexed long-chain phospholipids is ideal, and the complexed dimers are shielded from the disulfide exchange reaction.  相似文献   

6.
In bicellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), the transition from isotropic reorientation to partial orientational order, on warming, is known to coincide with a sharp increase in viscosity. In this work, cone-and-plate rheometry, (2)H NMR spectroscopy, and quadrupole echo decay observations have been used to obtain new insights into the dynamics of phases observed in bicellar DMPC/DHPC mixtures. Samples with 25% of the DMPC component deuterated were used to correlate rheological measurements with phase behavior observed by (2)H NMR spectroscopy. Mixtures containing only normal DMPC (DMPC/DHPC) or only chain perdeuterated DMPC (DMPC-d(54)/DHPC) were used to refine rheology and quadrupole echo decay measurements respectively. The viscosity peaked at 4-9 Pa·s, just above the isotropic-to-nematic transition, and then dropped as samples were warmed through the nematic-to-lamellar transition. Quadrupole echo decay times above the nematic-to-lamellar transition were significantly longer than typically observed in the liquid crystalline phase of saturated lipid multilamellar vesicles. This may indicate a damping of slow bilayer undulations resulting from the coupling of opposite bilayer surfaces by DHPC-lined pores.  相似文献   

7.
The phase transition of individually addressable microstructured lipid bilayers was investigated by means of imaging ellipsometry. Microstructured bilayers were created on silicon substrates by micromolding in capillaries, and the thermotropic behavior of various saturated diacyl phosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipentadecoyl-sn-glycero-3-phosphocholine, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)) bilayers as well as DMPC/cholesterol membranes was determined by measuring the area expansion and thickness of the bilayer as a function of temperature. We found an increase in the main phase transition temperature T(M) of 2-6 degrees C and a substantially reduced cooperativity compared to multilamellar vesicles. Measurements of lateral diffusion constants D employing fluorescence recovery after photobleaching revealed, however, only a marginal decrease in D compared to those found for vesicles and multibilayers. The known dependencies of T(M) both on the chain length of diacyl PC membranes and on the cholesterol content were reproduced on a solid support. Microstructured bilayers offer the unique advantage of integrating an internal standard of known thermotropic properties, which turned out to be important for reducing the measurement error and for ruling out the slightly changing impact of the surface on the phase transition behavior due to the surface pretreatment.  相似文献   

8.
Unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and varying quantities of either 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol) (sodium salt) (DMPG) or 1,2-dimyristoyl-3-trimethylammonium-propane (chloride salt) (DMTAP) were used to deposit lipid bilayer assemblies on self-assembled monolayers (SAMs) on gold. The supporting SAMs in turn were composed of ferrocene-functionalized hexadecanethiol chains (FcC16SH) diluted to low coverage in 1-hydroxylhexadecanethiol (HOC16SH) or a single-component monolayer phase of the latter. The mass coverages of the DMPC/DMPG layers deposited in this way were measured using surface plasmon resonance (SPR) and found to decrease with an increasing content of DMPG in the vesicles. The SPR data show that the lipid assembly, while stable with respect to gentle rinsing in aqueous buffer, is reversible and the lipid adlayer is removable by immersion in a solvent such as ethanol. The effects of the adsorbed lipid layer on the electrochemical interactions of the hybrid lipid/SAM with several redox probes [e.g., K4Fe(CN)6, Ru(NH3)6Cl3, and CsHsFe-[(C5H4CH2N+H(CH3)2] were characterized using cyclic voltammetry (CV). At a composition of 5% DMPG in DMPC, the permeabilities of the probes through the lipid layer were affected significantly relative to that observed with a pure DMPC layer. These effects include a striking observation of an enhanced, ionic-charge-specific molecular discrimination of the electrochemical probes. At higher concentrations of the DMPG, significant permeation of the lipid adlayer was seen for all the probes. These latter changes are also attended by a significant increase in the capacitive currents measured in CV experiments as compared to those observed for either a pure SAM or one modified by only DMPC. This effect likely results from the influence of the charged lipid on the diffuse Gouy-Chapman electrolyte layer at the SAM interface. In contrast to the behaviors seen with DMPG, the incorporation of DMTAP into the adsorbed DMPC had no impact on the permeation of the adlayer by soluble redox probes as judged by the observed electrochemistry, a result that appears to correlate with a less ideal mixing of lipids in the DMPC/DMTAP system relative to that of a DMPC/DMPG mixture.  相似文献   

9.
Zwitterionic long-chain lipids (e.g., dimyristoyl phosphatidylcholine, DMPC) spontaneously form onion-like, thermodynamically stable structures in aqueous solutions (commonly known as multilamellar vesicles, or MLVs). It has also been reported that the addition of zwitterionic short-chain (i.e., dihexanoyl phosphatidylcholine, DHPC) and charged long-chain (i.e., dimyristoyl phosphatidylglycerol, DMPG) lipids to zwitterionic long-chain lipid solutions results in the formation of unilamellar vesicles (ULVs). Here, we report a kinetic study on lipid mixtures composed of DMPC, DHPC, and DMPG. Two membrane charge densities (i.e., [DMPG]/[DMPC] = 0.01 and 0.001) and two solution salinities (i.e., [NaCl] = 0 and 0.2 M) are investigated. Upon dilution of the high-concentration samples at 50 °C, thermodynamically stable MLVs are formed, in the case of both weakly charged and high salinity solution mixtures, implying that the electrostatic interactions between bilayers are insufficient to cause MLVs to unbind. Importantly, in the case of these samples small angle neutron scattering (SANS) data show that, initially, nanodiscs (also known as bicelles) or bilayered ribbons form at low temperatures (i.e., 10 °C), but transform into uniform size, nanoscopic ULVs after incubation at 10 °C for 20 h, indicating that the nanodisc is a metastable structure. The instability of nanodiscs may be attributed to low membrane rigidity due to a reduced charge density and high salinity. Moreover, the uniform-sized ULVs persist even after being heated to 50 °C, where thermodynamically stable MLVs are observed. This result clearly demonstrates that these ULVs are kinetically trapped, and that the mechanical properties (e.g., bending rigidity) of 10 °C nanodiscs favor the formation of nanoscopic ULVs over that of MLVs. From a practical point of view, this method of forming uniform-sized ULVs may lend itself to their mass production, thus making them economically feasible for medical applications that depend on monodisperse lipid-based systems for therapeutic and diagnostic purposes.  相似文献   

10.
The morphology of DMPC/DHPC mixtures at total lipid concentration cL = 5% (w/w) and DMPC/DHPC ratio q approximately 3, doped with small amounts of DMPG or CTAB, was investigated. 31P NMR was used to identify the magnetically aligning phase, and cryo-transmission electron microscopy (cryo-TEM) was employed for structural characterization. Magnetic alignment was found to occur between approximately 30 and approximately 45 degrees C, and cryo-TEM showed that the magnetically aligning phase consisted of extended sheets with a lacelike structure. The aggregates are best described as intermediates between two-dimensional networks of flattened, highly branched, cylindrical micelles and lamellar sheets perforated by large irregular holes. DHPC most likely covers the edges of the holes, while DMPC makes up the bilayer bulk of the aggregates. However, 20-43% of the DHPC takes part in the bilayer, corresponding to 6-12% of the bilayer being made up of DHPC. This fraction increases with increasing temperature. At temperatures above 45 degrees C, the aligning phase collapses.  相似文献   

11.
We have recently reported phospholipid bicelles (bilayered micelles) that have positive anisotropy of the magnetic susceptibility and align with their normals parallel to an external magnetic field [J. Am. Chem. Soc. 2001, 123, 1537]. Improvements have been made via the synthesis of a new phospholipid, 1-dodecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-phosphocholine (DBBPC). Bicelles can be formed by mixing DBBPC with a short-chain phospholipid, 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in a ratio between 5.1:1 and 6.5:1 in an aqueous medium. The (31)P NMR spectra clearly show that these bicelles align with their principal axes parallel to the magnetic field within a wide temperature range. The (31)P chemical shifts indicate that the conformation of the polar headgroup in these bicelles may be different from that in common bicelles. The phase behavior of a mixture of DBBPC/DHPC with 6:1 mole ratio was investigated in the temperature range of 10-75 degrees C using (31)P, (2)H, and (23)Na NMR. At lower temperatures (10-54 degrees C), the system is dominated by the bicellar phase. At higher temperatures (54-75 degrees C), isotropic micelles are formed and coexist with the bicelles. The partial alignment of maltotriose in the DBBPC/DHPC system was studied at three temperatures, and the (1)H-(13)C dipolar coupling constants are compared with those obtained for two other bicelle solutions.  相似文献   

12.
The magnetic alignment behavior ofbicelles (magnetically alignable phospholipid bilayered membranes) as a function of the q ratio (1,2-dihexanoyl-sn-glycerol phosphatidylcholine/1,2-dimyristoyl-sn-glycerol phosphatidylcholine mole ratio) and temperature was studied by spin-labeled X-band electron paramagnetic resonance (EPR) spectroscopy and solid-state 2H and 31P NMR spectroscopy. Well-aligned bicelle samples were obtained at 45 degrees C for q ratios between 2.5 and 9.5 in both the EPR and NMR spectroscopic studies. The molecular order of the system, S(mol), increased as the q ratio increased and as the temperature decreased. For higher q ratios (> or = 5.5), bicelles maintained magnetic alignment when cooled below the main phase transition temperature (approximately 30 degrees C when in the presence of lanthanide cations), which is the first time, to our knowledge, that bicelles were magnetically aligned in the gel phase. For the 9.5 q ratio sample at 25 degrees C, S(mol) was calculated to be 0.83 (from 2H NMR spectra, utilizing the isotopic label perdeuterated 1,2-dimyristoyl-sn-glycerol phosphatidylcholine) and 0.911 (from EPR spectra utilizing the spin probe 3beta-doxyl-5alpha-cholestane). The molecular ordering of the high q ratio bicelles is comparable to literature values of S(mol) for both multilamellar vesicles and macroscopically aligned phospholipid bilayers on glass plates. The order parameter S(bicelle) revealed that the greatest degree of bicelle alignment was found at higher temperatures and larger q ratios (S(bicelle) = -0.92 for q ratio 8.5 at 50 degrees C).  相似文献   

13.
Polyethylene glycol (PEG)-conjugated lipids are commonly employed for steric stabilization of liposomes. When added in high concentrations PEG-lipids induce formation of mixed micelles, and depending on the lipid composition of the sample, these may adapt either a discoidal or a long threadlike shape. The factors governing the type of micellar aggregate formed have so far not been investigated in detail. In this study we have systematically varied the lipid composition in lipid/PEG-lipid mixtures and characterized the aggregate structure by means of cryo-transmission electron microscopy (cryo-TEM). The effects caused by adding sterols, phosphatidylethanolamines, and phospholipids with saturated acyl chains to egg phosphatidylcholine/1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (EPC/DSPE-PEG2000) mixtures with a fixed amount (25 mol %) of DSPE-PEG2000 was studied. Further, the aggregate structure in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine/1,2-dimyristoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000] (DMPC/DMPE-PEG2000) samples above and below the gel to liquid crystalline phase transition temperature (TC) was investigated. Our results revealed that lipid components, as well as environmental conditions, that reduce the lipid spontaneous curvature and increase the monolayer bending modulus tend to promote formation of discoidal micelles. At temperatures below the gel-to-liquid crystalline phase transition temperature reduced lipid/PEG-lipid miscibility, furthermore, likely contribute to the observed formation of discoidal rather than threadlike micelles.  相似文献   

14.
We described the first scanning tunneling microscopy study of spreading unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) at a Au(111) electrode surface. At the initial stage of the film formation, the molecular resolution images revealed that DMPC molecules are adsorbed flat with the acyl chains oriented parallel to the surface. The molecules assemble into double rows by aligning the acyl chains in the nearest neighbor direction of the reconstructed Au(111) surface and assuming a 90 +/- 10 degrees angle with respect to line of the molecular row. After approximately 30 min, this film is transformed into a hemimicellar state with long rows characteristic for the formation of hemicylindrical surface micelles. At hydrophilic surfaces such as glass, spreading of vesicles involves adsorption, rupture, and sliding of a single bilayer on a lubricating film of the solvent. We have provided the first evidence that a different mechanism is involved in spreading the vesicles at gold. The molecules released by rupture of vesicles self-assemble into an ordered film, and the assembly is controlled by the chain-substrate interaction.  相似文献   

15.
Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was employed to investigate the interaction of cholesterol with the headgroups of dimyristoylphosphatidycholine (DMPC) molecules under a static electric field. DMPC/cholesterol (7:3 molar ratio) mixtures form a bilayer on a Au(111) electrode surface by fusion and spreading of small unilamellar vesicles. PM-IRRAS experiments provided detailed information concerning the conformation and hydration of headgroups of DMPC bilayers in the presence and absence of 30% cholesterol. The presence of 30% cholesterol increases the space between the headgroups of DMPC molecules and hence increases the hydration of the DMPC/cholesterol mixed bilayer. The conformational state of the headgroups of DMPC molecules in the mixed bilayer is also significantly changed. The phosphate group is closer to the surface compared with the pure DMPC bilayer. The conformation of the -O-C-C-N moiety changes from gauche to trans in the presence of cholesterol.  相似文献   

16.
Many important classes of biomolecules require divalent cations for optimal activity, making these ions essential for biologically relevant structural studies. Bicelle mixtures composed of short-chain and long-chain lipids are often used in solution- and solid-state NMR structure determination; however, the phase diagrams of these useful orienting media and membrane mimetics are sensitive to other solution components. Therefore, we have investigated the effect of varying concentrations of four divalent cations, Ca(2+), Mg(2+), Zn(2+), and Cd(2+), on cholesterol sulfate-stabilized DMPC/DHPC bicelles. We found that low concentrations of all the divalent ions are tolerated with minimal perturbation. At higher concentrations Zn(2+) and Cd(2+) disrupt the magnetically aligned phase while Ca(2+) and Mg(2+) produce more strongly oriented phases. This result indicates that divalent cations are not only required to maintain the biological activity of proteins and nucleic acids; they may also be used to manipulate the behavior of the magnetically aligned phase.  相似文献   

17.
Opsin is the unstable apo‐protein of the light‐activated G protein‐coupled receptor rhodopsin. We investigated the stability of bovine opsin, solubilized in 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)/detergent bicelles, against urea‐induced unfolding. A single irreversible protein unfolding transition was observed from changes in intrinsic tryptophan fluorescence and far‐UV circular dichroism. This unfolding transition correlated with loss of protein activity. Changes in tertiary structure, as indicated by fluorescence measurements, were concomitant with an approximate 50% reduction in α‐helical content of opsin, indicating that global unfolding had been induced by urea. The urea concentration at the midpoint of unfolding was dependent on the lipid/detergent environment, occurring at approximately 1.2 m urea in DMPC/1,2‐dihexanoyl‐sn‐glycero‐3‐phosphocholine bicelles, while being significantly stabilized to approximately 3.5 m urea in DMPC/3‐[(cholamidopropyl)dimethylammonio]‐1‐propanesulfonate bicelles. These findings demonstrate that interactions with the surrounding lipids and detergent are highly influential in the unfolding of membrane protein structure. The urea/bicelle system offers the possibility for a more detailed understanding of the structural changes that take place upon irreversible unfolding of opsin.  相似文献   

18.
The characterization of different bicellar aggregates and the effects of these systems on the stratum corneum (SC) microstructure have been studied. Dynamic light scattering (DLS) and freeze fracture electron microscopy (FFEM) techniques showed that both of the systems studied, dimyristoyl-phosphatidylcholine/dihexanoyl-phosphocholine (DMPC/DHPC) and dipalmitoyl-phosphocholine (DPPC)/DHPC, were formed by small discoidal aggregates at room temperature (20°C). Treating skin with DMPC/DHPC bicelles does not affect the SC lipid microstructure, whereas bicellar systems formed by DPPC and DHPC can promote the formation of new structures in the SC lipid domains. This indicates the passage of lipids from bicelles through the SC layers and also a possible interaction of these lipids with the SC lipids. Given the absence of surfactant in the bicellar composition and the small size of these structures, the use of these smart nano-systems offers great advantages over other lipid systems for dermatological purposes. Bicelles could be promising applications as drug carriers through the skin. This contribution, based on the new biological use of bicelles, may be useful to scientists engaged in colloid science and offers a new tool for different applications in skin and cosmetic research.  相似文献   

19.
The mixed micelle formation in aqueous solutions between an anionic gemini surfactant derived from the amino acid cystine (C(8)Cys)(2), and the phospholipids 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC, a micelle-forming phospholipid) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, a vesicle-forming phospholipid) has been studied by conductivity and the results compared with the ones obtained for the mixed systems with the single-chain surfactant derived from cysteine, C(8)Cys. Phospholipid-surfactant interactions were found to be synergistic in nature and dependent on the type of phospholipid and on surfactant hydrophobicity. Regular solution theory was used to analyse the gemini surfactant-DHPC binary mixtures and the interaction parameter, β(12), has been evaluated, as well as mixed micelle composition. The results have been interpreted in terms of the interplay between reduction of the electrostatic repulsions among the ionic head groups of the surfactants and steric hindrances arising from incorporation of the zwitterionic phospholipids in the mixed micelles.  相似文献   

20.
First heterometal-organic single source precursors for NaYF(4) nanomaterials as a host matrix for up-conversion emission are reported. These novel heterobimetallic derivatives NaY(TFA)(4)(diglyme) (1), [Na(triglyme)(2)][Y(2)(TFA)(7)(THF)(2)] (2) and Na(2)Y(TFA)(5)(tetraglyme) (3) (TFA = trifluoroacetate), which were fully characterized by elemental analysis, FT-IR and (1)H NMR spectroscopy, TG-DTA data as well as single crystal X-ray structures, are advantageous in terms of being anhydrous and having lower decomposition temperatures in comparison to the homometallic precursor Y(TFA)(3)(H(2)O)(3). In addition, they also contain chelating glyme ligands, which act as capping reagents during decomposition to control the NaYF(4) particle size and render them monodisperse in organic solvents. On decomposition in 1-octadecene, the molecular derivatives 1 and 3 are converted, in the absence of any surfactant or capping reagent, to cubic NaYF(4) nanocrystals at significantly lower temperatures (below 250 °C). At higher temperature, a mixture of the cubic and hexagonal phases was obtained, the relative ratio of the two phases depending on the reaction temperature. A pure hexagonal phase, which is many folds more efficient for UC emission than the cubic phase, was obtained by calcining nanocrystals of mixed phase at 400 °C. In order to co-dope this host matrix with up-converting lanthanide cations, analogous complexes NaLn(TFA)(4)(diglyme) [Ln = Er (4), Tm (5), Yb (6)] and Na(2)Ln(TFA)(5)(tetraglyme) [Ln = Er (7), Yb (8)] were also prepared and characterized. The decomposition in 1-octadecene of suitable combinations and appropriate molar ratios of these yttrium, ytterbium and erbium/thulium derivatives gave cubic and/or hexagonal NaYF(4): Yb(3+), Er(3+)/Tm(3+) nanocrystals (NCs) capped by diglyme or tetraglyme ligands, which were characterized by IR, TG-DTA data, EDX analysis and TEM studies. Surface modification of these NCs by ligand exchange reactions with poly acrylic acid (PAA) and polyethyleneglycol (PEG) diacid 600 was also carried out to render them water soluble. The THF solutions of suitable combinations of the diglyme derivatives were also used to elaborate the thin films of NaYF(4):Yb(3+), Er(3+)/Tm(3+) on a glass or Si wafer substrate by spin coating. The multicolour up-conversion fluorescence was successfully realized in the Yb(3+)/Er(3+) (green/red) and Yb(3+)/Tm(3+) (blue/violet) co-doped NaYF(4) nanoparticles and thin films, which demonstrates that they are promising UC nanophosphors of immense practical interest. The up-conversion excitation pathways for the Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) co-doped materials are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号