首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a compact, efficient, high-energy, and high-repetition-rate mid-IR picosecond optical parametric oscillator (OPO) based on the new nonlinear material CdSiP(2) (CSP). The OPO is synchronously pumped by a master oscillator power amplifier system at 1064.1 nm, providing 1 μs long macropulses constituting 8.6 ps micropulses at 450 MHz, and it can be tuned over 486 nm across 6091-6577 nm, covering the technologically important wavelength range for surgical applications. Using a compact (~30 cm) cavity and improved, high-quality nonlinear crystal, idler macropulse energy as high as 1.5 mJ has been obtained at 6275 nm at a photon conversion efficiency of 29.5%, with >1.2 mJ over more than 68% of the tuning range, for an input macropulse energy of 30 mJ. Both the signal and idler beams are recorded to have good beam quality with a Gaussian spatial profile, and the extracted signal pulses are measured to have durations of 10.6 ps. Further, from the experimentally measured transmission data at 1064 nm, we have estimated the two-photon absorption coefficient of CSP to be β=2.4 cm/GW, with a corresponding energy bandgap, E(g)=2.08 eV.  相似文献   

2.
采用电光调Q脉冲Nd∶YAG激光的二次谐波 (5 32nm)抽运温度调谐的MgO∶LiNbO3晶体光学参量振荡器 ,调谐范围达 80 0nm~ 175 0nm。在单谐振运转条件下 ,抽运阈值为 2 1.5mJ/ pulse ,最大抽运能量为 5 8mJ时输出为 6 .45mJ ,在大信号情况下的能量转换效率达 11% ,输出线宽 1nm左右。  相似文献   

3.
We report on the implementation of a KTP optical parametric oscillator pumped by a pulsed tunable Ti:sapphire laser. Two major improvements were achieved, including the connection of the signal and idler tuning ranges and the high-output conversion efficiency through the signal and idler tuning ranges. Both in the signal and idler, the continuous output wavelength from 1.261 to 2.532μm was obtained by varying the pump wavelength from 0.7 to 0.98μm. The maximum output pulse energy was 27.2mJ and the maximum conversion efficiency was 35.7% at 1.311μm (signal).  相似文献   

4.
可调谐钛宝石激光抽运的KTP单谐振光学参量振荡器的研究   总被引:2,自引:0,他引:2  
介绍了 70 0nm~ 980nm的脉冲可调谐钛宝石激光抽运的KTP单谐振光学参量振荡器。通过改变抽运光波长作为光学参量振荡器输出参量光的调谐方式 ,确定了KTP晶体最佳切割角度 (θ=6 2 .5°,φ =0°) ,实验上获得了 12 5 1nm~ 2 5 32nm的连续参量光输出 ,最大输出能量约为 2 7 2mJ,最大转换效率为 35 7% (1311nm处 )。  相似文献   

5.
Mes J  Leblans M  Hogervorst W 《Optics letters》2002,27(16):1442-1444
We have developed a tunable, narrow-bandwidth nanosecond optical parametric oscillator system and applied it to spectroscopic studies. The system consists of a narrow-bandwidth grazing-incidence oscillator and a seeded power oscillator, generating Fourier-transform-limited 1.5-ns pulses (bandwidth <500 MHz) in the wavelength range 435 to 2000 nm with energy of 3.5 mJ at a pump energy of 22 mJ. Continuous scanning over 30 to 100 GHz (depending on wavelength) is demonstrated by recording of the resonance line of the Hg atom at 253.7 nm and a vibrational transition of the CO (2) molecule at 1528 nm.  相似文献   

6.
We develop an injection-seeded single-frequency neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with 500 Hz repetition rate and high peak power. The laser construction is designed as seed injection and master oscillator power amplifier (MOPA) including single-frequency master oscillator, extra-cavity frequency doubling crystal, and round-trip power amplifier. The master oscillator can emit 1,064 nm laser of 8.4 mJ with 6.8 ns pulse width at the pump energy equal to 23 mJ. A green laser energy of 1.1 mJ is obtained by setting the proper temperature of the LBO crystal. The pulse energy of 1,064 nm laser decreases to 6.5 mJ after passing through the LBO crystal and rises to 25.3 mJ after a round-trip power amplifier corresponding to the extraction efficiency of 29%. The final output pulse width is 6.5 ns, representing a peak power of 3.9 MW. The 1,064 nm laser beam quality factor M2 of the master oscillator and the amplified one are 1.3 and 1.5, respectively. The laser will be used to generate mid-infrared where the 532 nm laser with narrow pulse width is to pump sheet optical parametric oscillator (OPO) and the 1,064 nm laser with high peak power to pump the OPO.  相似文献   

7.
We present a compact high-peak-power, high-repetition-rate burst-mode laser from a master-oscillator power amplifier (MOPA) at 1064 nm for laser-based measurement applications. The oscillator is an 808 nm pulsed laser diode side-pumped acousto-optical (A-O) Q-switched Nd:YAG laser at repetition rates ranging from 10–100 kHz, producing a pulse train with a pulse number of 2–25. The maximum output energy of the oscillator is 15.6 mJ at 10 kHz, whereas it is 1.7 mJ at 100 kHz. After twostage amplifiers, a single-pulse energy of 85.2 mJ with a pulse-width of 14.5 ns is achieved at 10 kHz, which produces a peak power of 6.1 MW. At 100 kHz, the total burst energy reaches 220 mJ with a single-pulse energy of 8.8 mJ in the pulse burst laser system.  相似文献   

8.
Jiang N  Lempert WR 《Optics letters》2008,33(19):2236-2238
We demonstrate the ability to generate ultrahigh frequency burst sequences of deep UV at 226 nm by mixing the optical parametric oscillator signal output at 622 nm with third harmonic at 355 nm from a pulse burst laser system. We obtained 226 nm burst sequences with uniform burst envelopes, and the average pulse energy is approximately 0.5 mJ. Nitric oxide planar laser-induced fluorescence image sequences at ultrahigh (100 kHz) frame rates have been obtained.  相似文献   

9.
Narrow-linewidth optical pulses at wavelengths near 630 nm with 2.2-mJ energy were generated with 61% efficiency in a periodically poled KTiOPO(4) parametric oscillator pumped by a frequency-doubled Q -switched Nd:YAG laser. The tuning range was extended to 30 nm by a noncollinear elliptical pumping geometry. We demonstrate that by angular dispersion a noncollinear optical parametric oscillator can be used to control the spectral and spatial characteristics of the output signal beam.  相似文献   

10.
P. Jiang  S. Cai  B. Wu  D. Yang  J. Kong  Y. Shen 《Laser Physics》2009,19(6):1220-1222
A high-energy PPMgLN optical parametric oscillator (OPO) pumped by a E-O Q-switched Nd:YAG laser working at 1.064 μm was successfully illustrated. A maximum output pulse energy of 3.4 mJ was obtained with a pump threshold of 1.5 mJ and a slope efficiency of 30% around room temperature. The OPO output signal and idler wavelength were 1552 and 3384 nm, respectively. The damage to the input surface of PPMgLN crystal was carefully observed with a damage threshold of 4.6 J/cm2.  相似文献   

11.
本文首先阐述光参量振荡器的调谐原理及其温度调谐的计算.接着讨论研制光参量振荡器的若干技术问题.最后给出信号单谐光参量振荡的实验结果.波长谐范围为1.3—2.0μm.当波长调谐到1.9μm且工作重复率为10PPS时,输出能量为0.37mJ/脉冲.  相似文献   

12.
近红外KTP单共振光参量振荡器   总被引:3,自引:2,他引:1  
尹佳斌  刘耀岗 《光学学报》1993,13(3):24-228
本文报道了角度调谐KTP单共振参量振荡器(SRO)的实验结果,并对结果进行了分析讨论.采用调QNd:YAG激光的二次谐波作为泵浦源.受腔镜涂膜带宽的限制,调谐范围为785~1010nm.最大的参量光脉冲能量为2.4mJ.最大的能量转换效率为26.3%.  相似文献   

13.
We report on a passively Q-switched end pumped Nd:YLF laser including a noncritically phase-matched KTP singly resonant intracavity optical parametric oscillator (IOPO-KTP). For the Q-switching operation we have used Cr:YAG saturable absorber. The optimized passively Q-switched Nd:YLF laser without IOPO generated linearly polarized pulses of 11.5 ns and 1.07 mJ at 1047 nm. The conversion efficiency of the optimized Q-switched pulse energy at 1047 nm to 1547 nm of a signal approached about 47%. For optimizing both Nd:YLF laser and IOPO we have numerically solved a theoretical model. We have achieved 1.6-ns duration pulses at 1547 nm with energy of 0.5 mJ and peak power of above 300 kW. The beam quality was excellent (M2 ≈1).  相似文献   

14.
针对大气CO_2浓度探测差分吸收激光雷达的应用需求,采用稳定环形腔和模式匹配设计,搭建了一套单纵模1 064nm激光泵浦的单谐振KTP晶体光参量振荡器,获得高斜率转换效率、基横模的2.05μm波长纳秒激光脉冲输出.在8字形环形行波稳定腔中,将2块II类相位匹配KTP晶体以走离补偿方式放置,在20Hz重复频率下,当泵浦单脉冲能量达到11mJ时,获得了单脉冲能量为2.4mJ的2.05μm信号光输出,脉宽约24ns,斜率效率达到53%.2.05μm信号光光束质量因子在x、y方向分别为1.3和1.2.  相似文献   

15.
The design of a high temperature cell appropriate for electron beam side pumping of alkali excimer lasers is described. By using the cell, an amplified spontaneous emission (ASE) and small signal gain coefficient of 4% cm-1 of the K2 yellow band (574 nm) were observed from the e beam excited mixture of K/K2 vapor with argon buffer gas. The dissociative recombination of K+3 is discussed as an efficient formation process of upper states by electron beam pumping.It has demonstrated the feasibility of a β-BaB2O4 optical parametric oscillator(OPO) without frequency control elements that produces very narrow bandwidth, 10 ns pulses via injection seeding. It was achieved by a CW He Ne laser and the experiment threshold for injection seeding is less than 1 mW. With 25 mJ pump energy at 354.7 nm, it has obtained pulse energy of 2 mJ at 632.8 nm and the total effiency is greater than 15%.  相似文献   

16.
We report a singly resonant optical parametric oscillator (SRO) based on a ZnGeP(2) crystal directly pumped by a lamp-pumped Q-switched CrTmHo:YAG laser. The IR was tunable from 4.7 to 7.8 microm via crystal angle tuning. A maximum optical to optical efficiency of 56% was obtained from the pump (2.09 microm) to total IR at a pump energy of 6.5 mJ. The corresponding idler energy was 1.45 mJ. The SRO was measured to have a slope efficiency of 64% and a threshold of 1 mJ. The spatial beam quality of the idler, characterized by the M(2) parameter, was 1.38 when the SRO was pumped at 2.5 times threshold. These results show that ZnGeP(2) optical parametric oscillators directly pumped by a CrTmHo:YAG laser can be operated efficiently, while maintaining good IR beam quality.  相似文献   

17.
The aim of work was to characterize a simple oscillator consisted of Tm:YLF crystal end-pumped by a fiber coupled diode laser and active Q-switch with tunability option. About 7 W with near 35% slope efficiency was demonstrated in a free-running mode. The divergence angle was about 4.3 mrad and estimated parameter M2 < 1.3. Continuous tuning by means of Lyot’s filter, consisted of 2 quartz plates in the range of 1879.0–1939.4 nm with less than 1-nm linewidth, was achieved. For the best case (10-ms pump pulse duration, 42-A pump current corresponding to 266 mJ of pump energy), the Q-switched energy was 10.5 mJ with pulse duration of 22 ns corresponding to near 0.5 MW peak power. The 2.5 W of average power with 12.6-kW peak power and 2000-Hz repetition rate was demonstrated for cw pumping regime.  相似文献   

18.
Saikawa J  Fujii M  Ishizuki H  Taira T 《Optics letters》2007,32(20):2996-2998
We have demonstrated a simple, high-energy, narrow spectral bandwidth optical parametric oscillator (OPO) by use of a large aperture periodically poled Mg-doped LiNbO(3) device with a volume Bragg grating (VBG). A free-running degenerate OPO pumped by a Q-switched 1.064 microm Nd:YAG laser exhibits maximum output pulse energy of 110 mJ with high slope efficiency of 75% around room temperature. Broad spectral bandwidth (Dlambda~100 nm) around the degeneracy wavelength was suppressed by using a VBG as an output coupler. Up to 61 mJ of the output pulse energy with narrowed spectral bandwidth of less than 1.4 nm was obtained at the degeneracy wavelength of 2.128 microm.  相似文献   

19.
We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained.  相似文献   

20.
Tunable solid-state dye laser sample based on modified polymethyl methacrylate (MPMMA) with methanol co-doped with pyrromethene 567 (PM567) and Coumarin 440 (C440) was prepared. Tunable dye laser output wavelength from 546 to 594 nm was obtained in an oscillator-amplifier configuration. With the input seed laser energy being about 1.5 mJ, the highest dye laser output energy reached 113.9 mJ, and the corresponding conversion slope efficiency was 51.39%. To the best of our knowledge, the tuning range and narrow linewidth dye output energy is the best under the same condition so far. The linewidth for the seed laser and amplified laser were measured with the result of less than 0.2 nm. With the amplified medium being pumped at a repetition rate of 10 Hz with a pulse energy as high as 120 mJ (the fluence was 0.42 J/cm2), the laser output energy dropped to half of its initial value after approximate 43000 pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号