首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydroxido-bridged dinuclear ruthenium complex 4, which is supported by Tp ligands, has been prepared from protonation of the oxido-bridged dinuclear ruthenium complex 3. Additional protonation of 4, affording the aqua-bridged dinuclear ruthenium complex 5 in situ, and subsequent treatment with NO gave rise to the dicationic dinitrosyl complex 2. These indicate completion of the NO reduction cycle on the dinuclear ruthenium complex.  相似文献   

2.
Ruthenium-catalyzed Heck olefination and Suzuki cross coupling reactions have been developed. When starting with a ruthenium complex [RuCl(2)(p-cymene)](2) as a homogeneous catalyst precursor, induction periods were observed and ruthenium colloids of zero oxidation state were generated under catalytic conditions. Isolated ruthenium colloids carried out the olefination, implying that active catalytic species are ruthenium nanoclusters. To support this hypothesis, ruthenium nanoparticles stabilized with dodecylamine were independently prepared via a hydride reduction procedure, and their catalytic activity was subsequently examined. Olefination of iodobenzene with ethyl acrylate was efficiently catalyzed by the ruthenium nanoparticles under the same conditions, which could be also reused for the next runs. In poisoning experiments, the conversion of the olefination was completely inhibited in the presence of mercury, thus supporting our assumption on the nature of catalytic species. No residual ruthenium was detected from the filtrate at the end of the reaction. On the basis of the postulation, a heterogeneous catalyst system of ruthenium supported on alumina was consequently developed for the Heck olefination and Suzuki cross coupling reactions for the first time. It turned out that substrate scope and selectivity were significantly improved with the external ligand-free catalyst even under milder reaction conditions when compared to results with the homogeneous precatalyst. It was also observed that the immobilized ruthenium catalyst was recovered and reused up to several runs with consistent efficiency. Especially in the Suzuki couplings, the reactions could be efficiently carried out with as low as 1 mol % of the supported catalyst over a wide range of substrates and were scaled up to a few grams without any practical problems, giving coupled products with high purity by a simple workup procedure.  相似文献   

3.
Intermolecular [2+2+1] carbonylative cycloaddition of aldehydes with alkynes and subsequent oxidation to γ‐hydroxybutenolides is achieved using a supported ruthenium catalyst. A ceria‐supported ruthenium catalyst promotes the reaction efficiently, even with an ambient pressure of CO or without external CO, thus giving the corresponding γ‐hydroxybutenolide derivatives in good to high yields. Moreover this catalyst can be reused with no loss of activity.  相似文献   

4.
Intermolecular [2+2+1] carbonylative cycloaddition of aldehydes with alkynes and subsequent oxidation to γ‐hydroxybutenolides is achieved using a supported ruthenium catalyst. A ceria‐supported ruthenium catalyst promotes the reaction efficiently, even with an ambient pressure of CO or without external CO, thus giving the corresponding γ‐hydroxybutenolide derivatives in good to high yields. Moreover this catalyst can be reused with no loss of activity.  相似文献   

5.
Hong SH  Grubbs RH 《Organic letters》2007,9(10):1955-1957
Simple aqueous extraction removed ruthenium byproducts efficiently from ring-closing metathesis (RCM) reactions catalyzed by a poly(ethylene glycol) (PEG) supported N-heterocyclic carbene-based ruthenium complex.  相似文献   

6.
The potential application of the primary amine/nitrile pair as a liquid organic hydrogen carrier (LOHC) has been evaluated. Ruthenium complexes of formula [(p‐cym)Ru(NHC)Cl2] (NHC=N‐heterocyclic carbene) catalyze the acceptorless dehydrogenation of primary amines to nitriles with the formation of molecular hydrogen. Notably, the reaction proceeds without any external additive, under air, and under mild reaction conditions. The catalytic properties of a ruthenium complex supported on the surface of graphene have been explored for reutilization purposes. The ruthenium‐supported catalyst is active for at least 10 runs without any apparent loss of activity. The results obtained in terms of catalytic activity, stability, and recyclability are encouraging for the potential application of the amine/nitrile pair as a LOHC. The main challenge in the dehydrogenation of benzylamines is the selectivity control, such as avoiding the formation of imine byproducts due to transamination reactions. Herein, selectivity has been achieved by using long‐chain primary amines such as dodecylamine. Mechanistic studies have been performed to rationalize the key factors involved in the activity and selectivity of the catalysts in the dehydrogenation of amines. The experimental results suggest that the catalyst resting state contains a coordinated amine.  相似文献   

7.
An essentially molecular ruthenium–benzene complex anchored at the aluminum sites of dealuminated zeolite Y was formed by treating a zeolite‐supported mononuclear ruthenium complex, [Ru(acac)(η2‐C2H4)2]+ (acac=acetylacetonate, C5H7O2?), with 13C6H6 at 413 K. IR, 13C NMR, and extended X‐ray absorption fine structure (EXAFS) spectra of the sample reveal the replacement of two ethene ligands and one acac ligand in the original complex with one 13C6H6 ligand and the formation of adsorbed protonated acac (Hacac). The EXAFS results indicate that the supported [Ru(η6‐C6H6)]2+ incorporates an oxygen atom of the support to balance the charge, being bonded to the zeolite through three Ru? O bonds. The supported ruthenium–benzene complex is analogous to complexes with polyoxometalate ligands, consistent with the high structural uniformity of the zeolite‐supported species, which led to good agreement between the spectra and calculations at the density functional theory level. The calculations show that the interaction of the zeolite with the Hacac formed on treatment of the original complex with 13C6H6 drives the reaction to form the ruthenium–benzene complex.  相似文献   

8.
《Tetrahedron: Asymmetry》2005,16(23):3829-3836
A chiral ruthenium porphyrin complex, functionalized with four vinyl groups, has been polymerized with styrene, divinylbenzene (or ethylene glycol dimethacrylate) to obtain supported ruthenium complexes. The asymmetric addition of ethyl diazoacetate (or diazoacetonitrile) to styrene derivatives was carried out by using these polymers as catalysts. The reaction proceeded under mild conditions and gave trans-cyclopropanes with good enantiomeric excess (up to 90%).  相似文献   

9.
A set of supported ruthenium complexes with systematically varied ratios of chemisorbed to physisorbed species was formed by contacting cis‐[Ru(acac)2(C2H4)2] ( I ; acac=C5H7O2?) with dealuminated zeolite Y. Extended X‐ray absorption fine structure (EXAFS) spectra used to characterize the samples confirmed the systematic variation in the loadings of the two supported species and demonstrated that removal of bidentate acac ligands from I accompanied chemisorption to form [Ru(acac)(C2H4)2]+ attached through two Ru? O bonds to the Al sites of the zeolite. A high degree of uniformity in the chemisorbed species was demonstrated by sharp bands in the infrared (IR) spectrum characteristic of ruthenium dicarbonyls that formed when CO reacted with the anchored complex. When the ruthenium loading exceeded 1.0 wt % (Ru/Al≈1:6), the additional adsorbed species were simply physisorbed. Ethene ligands on the chemisorbed species reacted to form butenes when the temperature was raised to approximately 393 K; acac ligands remained bonded to Ru. In contrast, ethene ligands on the physisorbed complex simply desorbed under the same conditions. The chemisorption activated the ruthenium complex and facilitated dimerization of the ethene, which occurred catalytically. IR and EXAFS spectra of the supported samples indicate that 1) Ru centers in the chemisorbed species are more electron deficient than those in the physisorbed species and 2) Ru–ethene bonds in the chemisorbed species are less symmetric than those in the physisorbed species, which implies the presence of a preferred configuration for the catalytic dimerization.  相似文献   

10.
A fluorescent polypyridyl ruthenium complex was successfully prepared using an amide bond linkage to link two rhodamine moieties through bipyridine groups. Although photo‐induced electron transfer (PET) quenched the fluorescent intensity, the quantum yield of the rhodamine‐modified Ru(II) complex was 0.17 in water, sufficient for observing the fluorophore behaviour in biological systems. The rhodaminemodified Ru(II) complex was found to inhibit the bacterial growth of E. coli. In vitro fluorescence images of human hepatoma cells (SK‐Hep1) showed that a fluorescent polypyridyl ruthenium complex not only supported the above observation but also preferably accumulated in the cytoplasmic region inside the cell. These observations suggest that in addition to strong Ru–DNA interactions, Ru‐protein interactions in the cytoplasmic regions are strong and are therefore important to the development of metallopharmaceuticals.  相似文献   

11.
Comb graft copolymers (CGC), a special kind of the hyper-branched polymer series, have unique and excellent properties [1,2]. Synthesizing CGC via ring opening metathesis polymerization (ROMP) of cycloolefinyl macromonomer catalyzed (initiated) by the molybdenum carbene complex (Schrock complex) is a newly-developed method [3,4]. Though showing excellent catalytic behavior the complex has the disadvantage of highly moisture and oxygen sensitive and is hence operation-inconvenient. We repor…  相似文献   

12.
5-Chloromethyl-2-norbornene was synthesized via Diels-alder reaction of cyclopentadiene and allyl chloride using a polymer supported boron trifluoride as the catalyst,and was then lithiated and used to initiate a livcing anionic polymerization of styrene to prepare a macromonome,5-polystryl-2-norbornene NB-PS,Comb graft copolymer PNB-g-PS was synthesized via ring opening metathesis polymerization of the macromonomer under the catalysis of ruthenium carbene complex RuCl2(PPh3)2(=CCHtBu)and its polymer supported correspondent.Experimetal results showed that the behavior of both the supported boron and supported ruthenium catalysts are superior to their unsupported counterparts.The possible promotion mechanism of the tailor-made supports is discussed.  相似文献   

13.
Monometallic nickel and bimetallic ruthenium–nickel catalysts supported onto aluminum oxide without additives and aluminum oxide modified with MgO and CaO were prepared by an impregnation method. The catalysts were tested in the process of the mixed reforming of methane, and their properties were characterized by thermogravimetry, scanning electron microscopy, and X-ray diffractometry. The total organic carbon content of the catalysts was also measured. The promoting effect of ruthenium and structural promoters on the catalytic activity of Ni/Al2O3 was confirmed. The Ru–Ni/MgO–Al2O3 catalyst exhibited the highest stability and activity; this fact can be explained by the increased adsorption of methane on the surface of ruthenium–nickel clusters.  相似文献   

14.
The synthesis of an ionic liquid-supported olefin metathesis catalyst derived from Grubb's ruthenium carbene complex is described. This new supported catalyst has been used in BMI.PF6 solvent, and this allowed success in solving the challenging problem of catalyst recycling. The IL catalyst in BMI.PF6 can be recovered and reused up to 10 consecutive cycles in RCM reactions of several dienes with excellent conversions. Moreover, the IL catalyst shows a remarkable stability in BMI.PF6 and can be stored several months without loss of activity. These results clearly demonstrate the importance of anchoring an imidazolium ionic liquid pattern to the catalyst to avoid its leaching from the BMI.PF6 phase.  相似文献   

15.
Gas-phase hydrosilylation of acetylene by tri-chlorosilane catalyzed in a continuous flow apparatus by rhodium and ruthenium phosphine complexes immobilized on the silica via mercapto, phosphine, amine and nitrile ligands has been studied. GLC analysis of the reaction products showed vinyltrichlorosilane to be accompanied by products of double hydrosilylation of acetylene and the redistribution of trichlorosilane followed by the hydrosilylation and hydrogenative hydrosilylation of acetylene with dichlorosilane. A scheme for this complex competitive–consecutive reaction was proposed. The yield and selectivity of vinyltrichlorosilane can be much improved under special reaction conditions, e.g. rate flow of the particular substrates, temperature, given catalyst and others. Kinetic measurements carried out in the range of 115–140°C allowed us to evaluate the activation energy, Ea, for the vinyltrichlorosilane synthesis, which varied between 20.5 and 27.6 kJ mol?1 for the selected rhodium and ruthenium supported complexes.  相似文献   

16.
Multi-wall carbon nanotubes (MWNTs) supported ruthenium prepared with an impregnation method was used as catalyst in glucose hydrogenation to sorbitol. The effects of ruthenium loading, reaction time, temperature and initial hydrogen pressure on glucose hydrogenation were investigated. Compared with Raney Ni and ruthenium supported on Al2O3, SiO2, Ru/MWNTs showed higher catalytic activity.  相似文献   

17.
Dealuminated zeolite Y was used as a crystalline support for a mononuclear ruthenium complex synthesized from cis-Ru(acac)2(C2H4)2. Infrared (IR) and extended X-ray absorption fine structure spectra indicated that the surface species were mononuclear ruthenium complexes, Ru(acac)(C2H4)2(2+), tightly bonded to the surface by two Ru-O bonds at Al(3+) sites of the zeolite. The maximum loading of the anchored ruthenium complexes was one complex per two Al(3+) sites; at higher loadings, some of the cis-Ru(acac)2(C2H4)2 was physisorbed. In the presence of ethylene and H2, the surface-bound species entered into a catalytic cycle for ethylene dimerization and operated stably. IR data showed that at the start of the catalytic reaction, the acac ligand of the Ru(acac)(C2H4)2(2+) species was dissociated and captured by an Al(3+) site. Ethylene dimerization proceeded approximately 600 times faster with a cofeed of ethylene and H2 than without H2. These results provide evidence of the importance of the cooperation of the Al(3+) sites in the zeolite and the H2 in the feed for the genesis of the catalytically active species. The results presented here demonstrate the usefulness of dealuminated zeolite Y as a nearly uniform support that allows precise synthesis of supported catalysts and detailed elucidation of their structures.  相似文献   

18.
以模板法合成的硅纳米管(SNT)为载体,用浆态浸渍法制备了钌基催化剂,采用氮气物理吸附、透射电子显微镜(TEM)、X射线粉末衍射(XRD)和氢气程序升温还原(H2-TPR)等手段对其进行了表征。在固定床反应器上(503K,1.0MPa)考察了该催化剂的费-托合成反应活性及产物选择性,并与用商业二氧化硅为载体制备的催化剂上的反应结果进行了比较。结果表明,SNT和SiO2负载的氧化钌在623K可被H2完全还原;SNT负载的钌基催化剂上,钌氧化物颗粒较小、分散性好,还原后钌颗粒被较好地分散在硅纳米管上,且几乎所有的钌颗粒都分布在管内。与以SiO2为载体的催化剂相比,以硅纳米管为载体的钌基催化剂具有较高的费-托合成活性。  相似文献   

19.
A soluble polymer (MeO-PEG) supported biphenylbisphosphine (BIPHEP)-Ru/chiral diamine (1,2-diphenylethylenediamine) complex, in which the polymer is attached to the two phenyl rings of BIPHEP ligand, has been prepared, and shown to be highly active with good enantioselectivity for the catalyzed asymmetric hydrogenation of unfunctionalized aromatic ketones. The derived chiral ruthenium complex 5 proved to be stable in air allowing facile catalyst recycling. Especially for 4′-tert-butyl-acetophenone and 1-acetonaphthone, excellent ee values up to 96.5% and 95.9% have been obtained which are comparable to or even higher than the enantioselectivity achieved with 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl-Ru-DPEN catalyst under similar conditions.  相似文献   

20.
载体化络合催化开环歧化聚合合成梳形接枝共聚物研究   总被引:1,自引:1,他引:0  
由环戊二烯(CPD)及烯丙基氯(AC)经聚合物支载三氟化硼催化的Diels-Alder反应合成了5-氯甲基-2-降冰片烯(NB-CH2Cl),锂代后用以引发甲基丙烯酸甲酯(MMA)及苯乙烯(S)的活性阴离子聚合,合成了带聚合物取代基的降冰片烯大分子单体NB-PMMA及NB-PS。在聚合物支载钌卡宾络合物催化作用下进行所合成大分子单体的开环歧化聚合反应(ROMP),合成了二种接枝于开环歧化聚降冰片烯(PNB)主链的梳形接技共聚物PNB-g-PMMA及PNB-g-PS。实验结果表明所研制聚合物支载硼、钌络合物催化性能明显优于对应非支载活性种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号