首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of identification of the electronic structure of stable nitroxide radical complexes with organic ligands is developed. The idea of this approach is that the concentration dependences of the paramagnetic shifts and line widths of the NMR spectra of two ligands in solution depend on whether these ligands form complexes with the same radical orbital or with different orbitals. In the latter case the complexation of one ligand should not influence the paramagnetic shift and line broadening of another ligand molecule present in the solution. In contrast, in the former case such influence should exist since both ligands are in competition. On this basis different schemes of complexation are considered and theoretical expressions for paramagnetic shifts and line widths are derived that show what kind of experimental data is required to identify the structure of the complex. The theory developed can be generalized to other paramagnetic complexes of radicals, ions and molecules.  相似文献   

2.
Methods of EPR spectroscopy and GLC were used to determine the magnetic resonance and thermodynamic characters of the formation of paramagnetic complexes consisting of a free radical (diphenyldicumynitroxyl, triphenylverdazyl, indophenoxyl) and substituted benzenes. It was established that in such systems, depending on the donor-acceptor and polar properties of the diamagnetic molecules, there form paramagnetic complexes of two types: donor-acceptor complexes in which the free radical acts as a -electron acceptor and both intramolecular and intermolecular redistribution of spin density is accomplished, and dipole-dipole complex in which electrostatic interaction determines mutual orientation of molecules in the complex and intramolecular distribution of electron and spin densities. Spectral and thermodynamic criteria of the formation of donor-acceptor and dipole-dipole paramagnetic free radical-diamagnetic molecule complexes are formulated.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 3, pp. 283–289, May–June, 1989.  相似文献   

3.
A quantum chemical study of spatial and electronic structures of molecules in the frame complexes, bis[3,3′(RR′)-ketiminepropyl]methylamine nickel dichlorides, where R = H, CH3, and R′ = H, CH3, has been performed by DFT(B3LYP/LANL2DZ) method. The molecules of these complexes were found to be in a triplet state. Energy stability of the endo form of the complex molecules was shown. In the molecule of bis[3,3′-aldiminopropyl]methylamine nickel dichloride (R = R′ = H), a considerable strengthening of the bond Ni-N(amine) takes place when passing from the diamagnetic into paramagnetic state, and all bonds Ni-N become equivalent with respect to interatomic distance values. The topology analysis of the electron density for the complexes with R = R′ =H and R = R′ = CH3 was carried out. It is stated that all Ni-N bonds are covalent in the molecules of paramagnetic complexes.  相似文献   

4.
Zeolite rho was synthesized and Pd(II) exchanged into it. Pd(II) was reduced to paramagnetic Pd(1) by a thermal activation process. The interactions of Pd(I) in zeolite H-rho with oxygen, water, methanol, ammonia, carbon monoxide and ethylene have been studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM) spectroscopies. The ESR spectrum of an activated sample shows the formation of one Pd(I) species. Pd(I) interacts with water vapor or molecular oxygen to form Pd(II)–O2, indicating decomposition of water. Equilibration with methanol results in a broad isotropic ESR signal which is attributed to the formation of small palladium clusters. ESEM shows that the Pd clusters coordinate one molecule of methanol. Adsorption of ammonia produces a Pd(I) complex containing four molecules of ammonia based upon resolved nitrogen superhyperfine coupling. Adsorption of carbon monoxide results in a Pd(I) complex containing two molecules of carbon monoxide based upon resolved13C superhyperfine coupling. ESR and ESEM results indicate that exposure to ethylene leads to two new Pd(I) species each of which coordinates one molecule of ethylene.  相似文献   

5.
The recently published [(PCN)Pt═O](+) complex is interesting as a unique example of a stable d(6) terminal transition metal oxo complex not stabilized by electron withdrawing ligands and as a model of oxo complexes frequently implicated as key intermediates in various processes of oxygen transfer. In the present work, we report an extensive DFT study of its geometric and electronic structure, composition in solution, and reactivity. The thermodynamic data and calculated (195)Pt NMR chemical shifts reveal that one solvent molecule is weakly coordinated to the complex in acetone solution. This ancillary ligand is responsible for the diamagnetic state of the complex, retards intramolecular oxygen transfer, and facilitates CO oxidation. Chemical transformations of the coordinated acetone molecule, coordination of other ancillary ligands present in the reaction mixture, and protonation of the Pt-oxo group in nonacidic media are excluded based on thermodynamic or kinetic considerations. Bonding of the terminal oxo ligand with strong electrophiles presents the key interaction in the mechanisms of intramolecular oxygen insertion into the Pt-P bond, in CO oxidation and in water activation mediated by microsolvation. Low affinity of the terminal oxo ligand toward "soft" covalent interactions brings about intermediate formation of agostic hydrido and hydroxo complexes along the reaction pathway of dihydrogen oxidation. Stabilization of the Pt-oxo bonding is attributed to bending of the terminal oxo ligand out of the plane of the complex and to significant transfer of electron density from compact low lying Pt 5d orbitals to more diffuse 6s and 6p orbitals.  相似文献   

6.
Thermodynamic stability of metal–aminoacid complexes in water is discussed in terms of the Gibbs free energy of water–ligand exchange processes, and the electronic stabilizing factors thoroughly investigated by means of 1‐electron and 2‐electron density properties. Hexacoordinated complexes formed between iron cations and glycine molecules acting as monodentate or bidentate ligands have been chosen as targets for the current study. Results agree with experimental findings, and complexes formed with bidentate ligands are found to be more stable than those formed with monodentate ones. The larger the number of the coordinated glycine molecules the more stable is the complex. Fe(III) complexes are more stable than Fe(II) ones, but differences are small and the Fe3+/Fe2+ exchange process appears to be energetically feasible for these complexes. Formation of the second glycine–iron interaction involving the amino nitrogen in the bidentate ligands is enthalpycally unfavorable but takes place due to the large entropy rise of the process. The larger stability of Fe(III) complexes is due however to the balance between energetic and solvation terms, which is favorable to these complexes. Electron density properties account satisfactorily for the electronic energy changes along the complex formation in terms of ligand–metal electron transfer and covalent bond orders. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

7.
The influence of an external magnetic field on the rate of electron transfer is studied theoretically for the case of a donor-acceptor complex with paramagnetic ions as bridging sites. We demonstrate for a bridge with a single and with two paramagnetic ions that the applied magnetic field causes a blocking effect of the electron transfer. Each paramagnetic ion staying in its electronic ground state is assumed to reduce its spin from if the transferred electron is coupled to it. Such a spin reduction determines the magnetic field dependence of the transfer rate in a specific manner. The magnetic field dependence is derived at low temperatures in utilizing the Wigner 6j-symbols method. For the case of two paramagnetic ions per bridge the exchange interaction between them has been additionally included into the calculations. It is responsible for the step-like dependence of the rate constant on the magnetic field, as well as for the creation of a rather narrow field-strength region where the rate constant drops to zero.  相似文献   

8.
The complexes of poly(phenylacetylene) (PPA) with electron acceptors are examined. The concentration of paramagnetic centers is estimated, together with the line-shape parameters and the size of the delocalization region. The temperature dependence of the ESR intensity is used to show that the paramagnetism of complexes of PPA with weak acceptors is due solely to the formation of local defect centers. PPA forms strong charge-transfer complexes with iodine, tetracyanoethylene, and tetracyanoquinodimethane; these contain ion radicals. The activation energy for charge transfer in these complexes is 0.12–0.14 eV. An ESR signal has also been observed from the complex of PPA with the electron donor naphthacene.  相似文献   

9.
The distribution of unpaired electron spin over all regions of the organic ligands was extracted from the large positive and negative 1H and 13C NMR paramagnetic shifts of the title complexes. Owing to benevolent line broadening and to very high sensitivities of approximately 254,000 and approximately 201,000 ppm/(unpaired electron spin) for Co(II) and Ni(II), respectively, at 298 K in these pseudotetrahedral bis(N,N'-chelates), spin transmission through the sigma- (and orthogonal pi)-bonding system of the ligands could be traced from the chelate ring over five to nine sigma bonds. Most of those "experimental" spin densities DeltarhoN (situated at the observed nuclei) agree reasonably well with quantum chemical DeltarhoDFT (DFT = density functional theory) values and provide an unsurpassed number of benchmark values for the quality of certain types of modern density functionals. The extraction of DeltarhoN became possible through the unequivocal separation of the nuclear Fermi contact shift components from the metal-centered pseudocontact shifts, which are proportional to the anisotropy Deltachi of the magnetic susceptibility: Experimental Deltachi values were obtained in solution from measured deuterium quadrupole splittings in the 2H NMR spectra of two deuterated model complexes and were found to be nonlinear functions of the reciprocal temperature. This provided the reliable basis for predicting metal-centered pseudocontact shifts for any position of a topologically well-defined ligand at varying temperatures. The related ligand-centered pseudocontact shifts were sought by using the criterion of their expected nonlinear dependence on the reciprocal temperature. However, their contributions could not be differentiated from other small effects close to the metal center; otherwise, they appeared to be smaller than the experimental uncertainties. The free activation energy of N-aryl rotation past a vicinal tert-butyl substituent in the Ni(II) vinamidine bis(N,N'-chelates) is DeltaG++(+74 degrees C) approximately 17.0 kcal/mol and past a vicinal methyl group DeltaG++(-6 degrees C) approximately 13.1 kcal/mol.  相似文献   

10.
We present here the first density functional theoretic study into the mechanism of cysteine dioxygenation by a model of cysteine dioxygenase enzymes. A large active site model containing the ligands bound to iron plus amino acid residues that are involved in hydrogen bonding interactions with the substrate is used. The reaction takes place via multi-state reactivity patterns on competing singlet, triplet, and quintet spin states, whereby the latter is the ground state in most complexes. Several new intermediates have been predicted, which have not been anticipated before. The dioxygen-bound complex is in a singlet spin ground state, and a state crossing to the quintet spin state leads to an FeOOS ring structure that splits into a cysteinyloxide radical that reorients and abstracts an electron from the iron center. In the final step, the oxoiron donates the oxygen atom to the substrate to produce cysteine sulfinic acid in a highly exothermic process. The rate-determining step is the initial step in the reaction mechanism on the quintet spin state surface.  相似文献   

11.
A comprehensive high resolution electron paramagnetic resonance (EPR) characterization of the l-methionine radical cation and its N-acetyl derivative in liquid solution at room temperature is presented. The cations were generated photochemically in high yield by excimer laser excitation of a water soluble dye, anthraquinone sulfonate sodium salt, the excited triplet state of which is quenched by electron transfer from the side chain sulfur atom of methionine or N-acetylmethionine. The radicals were detected by continuous wave (CW) time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz) and Q-band (35 GHz) microwave frequencies. At pH values well below the pK(a) of the protonated amine nitrogen, the cation forms a dimer with another ground-state methionine molecule through a S-S three-electron bond. In basic solution, the lone pair on the nitrogen of the amino acid is available to make an intramolecular S-N three-electron bond with the side chain sulfur atom, leading to a five-membered ring structure for the cation. When the amino acid nitrogen is unsubstituted (methionine itself), rapid deprotonation to an aminyl radical takes place at high pH values. If the nitrogen is substituted (N-acetylmethionine), the cyclic structure is observed within its electron spin relaxation time at about 1 micros. Spectral simulation provides chemical shifts (g-factors) and hyperfine coupling constants for all structures, and isotopic labeling experiments strongly support the assignments.  相似文献   

12.
Combination of three radical anionic Ph-BIAN ligands (Ph-BIAN=bis-(phenylimino)-acenaphthenequinone) with lanthanoid ions leads to a series of homoleptic, six-coordinate complexes of the type Ln(Ph-BIAN)3. Magnetic coupling data were measured by paramagnetic solution NMR spectroscopy. Combining 1H NMR with 2H NMR of partially deuterated compounds allowed a detailed study of the magnetic susceptibility anisotropies over a large temperature range. The observed chemical shifts were separated into ligand- and metal-centered contributions by comparison with the Y analogue (diamagnetic at the metal). The metal-centered contributions of the complexes with the paramagnetic ions could then be separated into pseudocontact and Fermi contact shifts. The latter is large within the Ph-BIAN scaffold, which shows that magnetic coupling is significant between the lanthanide ion and the radical ligand. Pseudocontact shifts were further correlated to structural data obtained from X-ray diffraction experiments. Ligand-field parameters were determined by fitting the temperature dependence of the observed magnetic susceptibility anisotropies. The electronic structure determined by this approach shows, that the Er and Tm analogues are candidates for single molecule magnets (SMM). These results demonstrate the possibilities for the application of NMR spectroscopy in investigations of paramagnetic systems in general and single molecule magnets in particular.  相似文献   

13.
The proton nmr isotropic shifts of pyridine type ligands coordinated to paramagnetic nickel(II) and cobalt(II) acetylacetonate are reported, and the mechanisms of unpaired electron spin delocalization in these complexes are discussed. It is found that a σ-delocalization mechanism is in dominant, but the π-contribution can not be rule out. The calculations of the geometric factor for Co(II) complexes are done. It is used in the ratio method to separate the contribution of pseudo-contact shift from isotropic shift for Co(II) complexes. The effect of pseudoaromatic chelate ring on contact shift is not so large as previously reported.  相似文献   

14.
High-resolution X-ray diffraction and polarized neutron diffraction experiments have been performed on the Y-semiquinonate complex, Y(HBPz3)2(DTBSQ), in order to determine the charge and spin densities in the paramagnetic ground state, S = (1/2). The aim of these combined studies is to bring new insights to the antiferromagnetic coupling mechanism between the semiquinonate radical and the rare earth ion in the isomorphous Gd(HBPz3)2(DTBSQ) complex. The experimental charge density at 106 K yields detailed information about the bonding between the Y3+ ion and the semiquinonate ligand; the topological charge of the yttrium atom indicates a transfer of about 1.5 electrons from the radical toward the Y3+ ion in the complex, in agreement with DFT calculations. The electron density deformation map reveals well-resolved oxygen lone pairs with one lobe polarized toward the yttrium atom. The determination of the induced spin density at 1.9 K under an applied magnetic field of 9.5 T permits the visualization of the delocalized magnetic orbital of the radical throughout the entire molecule. The spin is mainly distributed on the oxygen atoms [O1 (0.12(1) mu B), O2(0.11(1) mu B)] and the carbon atoms [C21 (0.24(1) mu B), C22(0.20(1) mu B), C24(0.16(1) mu B), C25(0.12(1) mu B)] of the carbonyl ring. A significant spin delocalization on the yttrium site of 0.08(2) mu B is observed, proving that a direct overlap with the radical magnetic orbital can occur at the rare earth site and lead to antiferromagnetic coupling. The DFT calculations are in good quantitative agreement with the experimental charge density results, but they underestimate the spin delocalization of the oxygen toward the yttrium and the carbon atoms of the carbonyl ring.  相似文献   

15.
The multiphoton association reaction He + H+ → HeH+ in the electronic ground state is investigated using the time‐dependent quantum wave packet method. It is shown that the collision pairs He + H+ in continuum state transfer into ν = 0 state and then produce stable molecules HeH+ through emission of two or three photons. The multiphoton transition takes place via intermediate states, and the transfer probability is determined by the collision energy and the intermediate states. The populations of the intermediate states and ν = 0 state can be controlled by the laser duration. The three‐photon transition is more efficient than the two‐photon transition for producing the molecule HeH+ in ν = 0 state. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
A set of pyridine monoimine (PMI) rhenium(I) tricarbonyl chlorido complexes with substituents of different steric and electronic properties was synthesized and fully characterized. Spectroscopic (NMR and IR) and single‐crystal X‐ray diffraction analyses of these complexes showed that the redox‐active PMI ligands are neutral and that the overall electronic structure is little affected by the choices of the substituent at the ligand backbone. One‐ and two‐electron reduction products were prepared from selected starting compounds and could also be characterized by multiple spectroscopic methods and X‐ray diffraction. The final product of a one‐electron reduction in THF is a diamagnetic metal–metal‐bonded dimer after loss of the chlorido ligand. Bond lengths in and NMR chemical shifts of the PMI ligand backbone indicate partial electron transfer to the ligand. Two‐electron reduction in THF also leads to the loss of the chlorido ligand and a pentacoordinate complex is obtained. The comparison with reported bond lengths and 13C NMR chemical shifts of doubly reduced free pyridine monoaldimine ligands indicates that both redox equivalents in the doubly reduced rhenium complex investigated here are located in the PMI ligand. With diamagnetic complexes varying over three formal reduction stages at the PMI ligand we were, for the first time, able to establish correlations of the 13C NMR chemical shifts with the relevant bond lengths in redox‐active ligands over a full redox series.  相似文献   

17.
Cooperative reactivity plays an important role in the oxidation of CO to CO(2) by palladium oxide cations and offers insight into factors which influence catalysis. Comprehensive studies including guided-ion-beam mass spectrometry and theoretical investigations reveal the reaction products and profiles of PdO(2)(+) and PdO(3)(+) with CO through oxygen radical centers and dioxygen complexes bound to the Pd atom. O radical centers are more reactive than the dioxygen complexes, and experimental evidence of both direct and cooperative CO oxidation with the adsorption of two CO molecules are observed. The binding of multiple electron withdrawing CO molecules is found to increase the barrier heights for reactivity due to decreased binding of the secondary CO molecule, however, reactivity is enhanced by the increase in kinetic energy available to hurdle the barrier. We examine the effect of oxygen sites, cooperative ligands, and spin including two-state reactivity.  相似文献   

18.
Empirically established correlations between magnetic resonance parameters of free radicals (g-factors, isotropic hyperfine coupling constans) and isostructural molecules (chemical shifts, isotropic spin-spin coupling constants) or structurally similar ligands in paramagnetic transition metal complexes (isotropic chemical shifts) are systematized and critically discussed. Quantum-chemical analysis of the suggested spin distribution damping coefficients in model systems and structurally similar chemical compounds is performed. Based on the results obtained, physicochemical interpretation of the observed correlations between the parameters of ESR and NMR spectra is given. Dedicated to the memory of Academician V. V. Voevodskii (to the 80th anniversary). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1575–1583, September, 1997  相似文献   

19.
Seven new bis(o-iminosemiquinonato)copper(II) complexes, 1- 5, 1a, 1b, derived from differently substituted N-phenyl-2-aminophenol-based ligands, are described. Their crystal structures were determined by X-ray diffraction, and their electronic structures were established by various physical methods including electron paramagnetic resonance and variable-temperature (2-290 K) susceptibility measurements. Like complex 6, which was reported recently by us, all complexes exhibit an S t = (1)/ 2 ground state, based on the "isolated" copper(II)-spin character resulting from the dominating antiferromagnetic spin coupling between the two radicals; the ground-state electronic configuration can thus be designated as (increasing, increasing, decreasing)[R-Cu-R]. In addition, broken spin symmetry density functional solutions have been obtained. From the set of unrestricted canonical Kohn-Sham orbitals, the magnetic orbitals have been identified. The identification procedure is based on the nonvanishing overlap integrals between the space parts of orbitals occupied by electrons of opposite spin. The theoretically determined magnetic orbitals support the spin configurations suggested by the experiments. Electrochemical measurements (cyclic voltammetry and square-wave voltammetry) indicate ligand-centered redox processes. Complex 1 is found to be the best catalyst among the Cu(II) complexes for oxidation of primary alcohols with aerial oxygen as the sole oxidant to afford aldehydes under mild conditions. Thus, the function of the copper-containing enzyme Galactose Oxidase has been mimicked. Kinetic measurements in conjunction with electron paramagnetic resonance and electronic spectral studies have been used to decipher the catalytic oxidation process. A ligand-derived redox activity has been proposed as a mechanism for the aerial oxidation of primary alcohols.  相似文献   

20.
While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes are presented, and the mechanism of 1O2 generation is discussed, including evidence for singlet oxygen generation via an electron‐transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including “traditional” singlet oxygen reactions (ene reaction, [4 + 2] and [2 + 2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号