首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New materials based on the composition of the mineral schafarzikite, FeSb $_{2}\textit {O}_{4}$ , have been synthesised. $^{57}$ Fe- and $^{121}$ Sb- Mössbauer spectroscopy shows that iron is present as Fe $^{2+}$ and that antimony is present as Sb $^{3+}$ . The presence of Pb $^{2+}$ on the antimony sites in materials of composition FeSb $_{1.5}$ Pb $_{0.5}\textit {O}_{4}$ induces partial oxidation of Fe $^{2+}_{}$ to Fe $^{3+}$ . The quasi-one-dimensional magnetic structure of schafarzikite is retained in FeSb $_{1.5}$ Pb $_{0.5}\textit {O}_{4}$ and gives rise to weakly coupled non-magnetic Fe $^{2+}$ ions coexisting with Fe $^{3+}$ ions in a magnetically ordered state. A similar model can be applied to account for the spectra recorded from the compound Co $_{0.5}$ Fe $_{0.5}$ Sb $_{1.5}$ Pb $_{0.5}\textit {O}_{4}$ .  相似文献   

2.
In this article, we study the ${3\over 2}^{+}$ heavy and doubly heavy baryon states $\varXi^{*}_{cc}$ , $\varOmega^{*}_{cc}$ , $\varXi^{*}_{bb}$ , $\varOmega^{*}_{bb}$ , $\varSigma_{c}^{*}$ , $\varXi_{c}^{*}$ , $\varOmega_{c}^{*}$ , $\varSigma_{b}^{*}$ , $\varXi_{b}^{*}$ and $\varOmega_{b}^{*}$ by subtracting the contributions from the corresponding ${3\over 2}^{-}$ heavy and doubly heavy baryon states with the QCD sum rules, and we make reasonable predictions for their masses.  相似文献   

3.
In order to improve the glass-forming ability (GFA) of Nd–Fe–B ternary alloys to obtain fully amorphous bulk Nd–Fe–B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd–Y–Fe–Mo–B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with the Y content. The fully amorphous structures were all formed in the Nd $_{6-{x}}$ Y $_{{x}}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ (x $=$ 1–5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd $_{3}$ Y $_{3}$ Fe $_{68}$ Mo $_{4}$ B $_{22}$ BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate.  相似文献   

4.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

5.
Trivalent holmium-doped K–Sr–Al phosphate glasses ( $\mathrm{P}_{2}\mathrm{O}_{5}$ $\mathrm{K}_{2}\mathrm{O}$ –SrO– $\mathrm{Al}_{2}\mathrm{O}_{3}$ $\mathrm{Ho}_{2}\mathrm{O}_{3}$ ) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd–Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% $\mathrm{Ho}_{2}\mathrm{O}_{3}$ -doped K–Sr–Al phosphate glass. The Judd–Ofelt intensity parameters ( $\varOmega_{\lambda}$ , $\times10^{-20}~\mathrm{cm}^{2}$ ) have been determined of the order of $\varOmega_{2} = 11.39$ , $\varOmega_{4} = 3.59$ , and $\varOmega_{6} = 2.92$ , which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of $\mathrm{Ho}^{3+}$ ions. The radiative lifetimes for the ${}^{5}F_{4}$ , ${}^{5}S_{2}$ , and ${}^{5}F_{5}$ levels of $\mathrm{Ho}^{3+}$ ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be $9.3\times10^{-2 1}~\mathrm{cm}^{2}$ . The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other $\mathrm{Ho}^{3+}$ -doped systems to assess the possibility for visible and infrared device applications.  相似文献   

6.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

7.
$(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ $(x=0.07, 0.09, 0.16, 0.22, 0.31)$ films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The influence of Fe doping on the local structure of films was investigated by X-ray absorption spectroscopy (XAS) at Fe K-edge and L-edge. For the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.07, 0.09 \mbox{ and } 0.16$ , Fe ions dissolve into $\mathrm{In}_{2}\mathrm{O}_{3}$ and substitute for $\mathrm{In}^{3+}$ sites with a mixed-valence state ( $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$ ) of Fe ions. However, a secondary phase of Fe metal clusters is formed in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.22 \mbox{ and } 0.31$ . The qualitative analyses of Fe-K edge extended X-ray absorption fine structure (EXAFS) reveal that the Fe–O bond length shortens and the corresponding Debye–Waller factor ( $\sigma^{2}$ ) increases with the increase of Fe concentration, indicating the relaxation of oxygen environment of Fe ions upon substitution. The anomalously large structural disorder and very short Fe–O distance are also observed in the films with high Fe concentration. Linear combination fittings at Fe L-edge further confirm the coexistence of $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ with a ratio of ${\sim}3:2$ ( $\mathrm{Fe}^{2+}: \mathrm{Fe}^{3+}$ ) for the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.16$ . However, a significant fraction ( ${\sim}40~\mbox{at\%}$ ) of the Fe metal clusters is found in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.31$ .  相似文献   

8.
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let ${\tilde{p}_1}$ and ${\tilde{p}_2}$ be two energy-momentum vectors of a massive particle and let ${\Delta}$ be a small neighbourhood of ${\tilde{p}_1 + \tilde{p}_2}$ . We construct asymptotic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of energy-momenta in small neighbourhoods of ${\tilde{p}_1}$ and ${\tilde{p}_2}$ . We show that these asymptotic observables exist, as strong limits of their approximating sequences, on all physical states from the spectral subspace of ${\Delta}$ . Moreover, the linear span of the ranges of all such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle scattering states with total energy-momenta in ${\Delta}$ . The result holds under very general conditions which are satisfied, for example, in ${\lambda{\phi}_{2}^{4}}$ . The proof of convergence relies on a variant of the phase-space propagation estimate of Graf.  相似文献   

9.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

10.
Cobalt–zinc nanoferrites with formulae Co $_{1-x}$ Zn $_{x}$ Fe $_{2}$ O $_{4}$ , where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant ( $\varepsilon $ ’) and dielectric loss tangent (tan $\delta )$ are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, $\varepsilon $ ’ and tan $\delta $ , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell–Wagner’s two-layer model and the hopping of charge between Fe $^{2+}$ and Fe $^{3+}$ . Further, a very high value of dielectric constant and a low value of tan $\delta $ are the prime achievements of the present work. The AC electrical conductivity ( $\sigma _\mathrm{AC})$ is studied as a function of temperature as well as frequency and $\sigma _\mathrm{AC}$ is observed to be increasing with the increase in temperature and frequency.  相似文献   

11.
The theoretical calculations indicated that the monoclinic low-temperature phase of silver telluride $(\upbeta \hbox {-Ag}_{2}\hbox {Te})$ is a new binary topological insulator with highly anisotropic single Dirac cone surface. We obtained $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ crystal ingots containing few grains by the Bridgman method. We also deposited thin films of tellurium, $\hbox {Ag}_{5}\hbox {Te}_{3}\hbox { and }(\hbox {Te+Ag}_{5}\hbox {Te}_{3})$ by thermal evaporation method. The Raman spectra of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ were measured at three excitation wave lengths: 633, 515 and 488 nm. The Raman active modes of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ are situated at frequencies below 300  $\hbox {cm}^{-1}$ while vibrations of other phases appear at higher frequencies.  相似文献   

12.
In this article, we study the vertexes $ \Xi_{Q}^{*}$ Q V and $ \Sigma_{Q}^{*}$ $ \Sigma_{Q}^{}$ V with the light-cone QCD sum rules, then assume the vector meson dominance of the intermediate $ \phi$ (1020) , $ \rho$ (770) and $ \omega$ (782) , and calculate the radiative decays $ \Xi_{Q}^{*}$ $ \rightarrow$ Q $ \gamma$ and $ \Sigma_{Q}^{*}$ $ \rightarrow$ $ \Sigma_{Q}^{}$ $ \gamma$ .  相似文献   

13.
We study the radiative and semileptonic B decays involving a spin-J resonant $K_{J}^{(*)}$ with parity (?1) J for $K_{J}^{*}$ and (?1) J+1 for K J in the final state. Using large energy effective theory (LEET) techniques, we formulate $B\to K_{J}^{(*)}$ transition form factors in the large recoil region in terms of two independent LEET functions $\zeta_{\perp}^{K_{J}^{(*)}}$ and $\zeta_{\parallel}^{K_{J}^{(*)}}$ , the values of which at zero momentum transfer are estimated in the BSW model. According to the QCD counting rules, $\zeta_{\perp,\parallel}^{K_{J}^{(*)}}$ exhibit a dipole dependence in q 2. We predict the decay rates for $B\to K_{J}^{(*)}\gamma$ , $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ and $B\to K_{J}^{(*)}\nu \bar{\nu}$ . The branching fractions for these decays with higher K-resonances in the final state are suppressed due to the smaller phase spaces and the smaller values of $\zeta^{K_{J}^{(*)}}_{\perp,\parallel}$ . Furthermore, if the spin of $K_{J}^{(*)}$ becomes larger, the branching fractions will be further suppressed due to the smaller Clebsch–Gordan coefficients defined by the polarization tensors of the $K_{J}^{(*)}$ . We also calculate the forward–backward asymmetry of the $B\to K_{J}^{(*)}\ell^{+}\ell^{-}$ decay, for which the zero is highly insensitive to the K-resonances in the LEET parametrization.  相似文献   

14.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

15.
Optical Poincare sphere rotations $e^{-i\theta\sigma_{x}/2}$ , $e^{-i\theta\sigma_{y}/2}$ and $e^{-i\theta\sigma_{z}/2}$ can be realized by wave-plate combinations. Errors due to combinations with non-ideal wave plates are discussed for three specific combinations (θ=π) by trace distance. The result shows that different settings of combinations affect trace distance: (i) trace distance for $e^{-i\pi\sigma_{x}/2}$ equals that for $e^{-i\pi\sigma_{z}/2}$ , but both of them are smaller than that for $e^{-i\pi\sigma_{y}/2}$ , when optics-axis random errors are considered; (ii) trace distance for $e^{-i\pi\sigma_{x}/2}$ also equals that for $e^{-i\pi\sigma_{z}/2}$ , but both of them are larger than that for $e^{-i\pi\sigma_{y}/2}$ , when phase-shift random errors are considered. The method outlined in this paper is general and is useful to analyze other combinations.  相似文献   

16.
Newman’s measure for (dis)assortativity, the linear degree correlation coefficient $\rho _{D}$ , is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases $\rho _{D}$ conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and the algebraic connectivity $\mu _{N-1}$ (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for $\lambda _{1}$ increase with $\rho _{D}$ . A new upper bound for the algebraic connectivity $\mu _{N-1}$ decreases with $\rho _{D}$ . Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases $\lambda _{1}$ , but decreases $\mu _{N-1}$ , even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases $\lambda _{1}$ , but increases the algebraic connectivity, at least in the initial rewirings.  相似文献   

17.
T. Mart 《Few-Body Systems》2013,54(7-10):1167-1170
Photoproduction of ${K\Sigma}$ on the nucleon in four isospin channels has been investigated near their production thresholds by means of an isobar model. It is shown that in the proton channels ( ${K^+\Sigma^0}$ and ${K^0\Sigma^+}$ channels) the model can nicely reproduce experimental data. Due to the uncertainties in the neutron helicity amplitudes our predictions imply some uncertainties in the observables of the neutron channels ( ${K^+\Sigma^-}$ and ${K^0\Sigma^0}$ channels).  相似文献   

18.
We consider Dirichlet-to-Neumann maps associated with (not necessarily self-adjoint) Schrödinger operators describing nonlocal interactions in ${L^2(\Omega; d^n x)}$ , where ${\Omega \subset \mathbb{R}^n}$ , ${n\in\mathbb{N}}$ , ${n\geq 2}$ , are open sets with a compact, nonempty boundary ${\partial\Omega}$ satisfying certain regularity conditions. As an application we describe a reduction of a certain ratio of Fredholm perturbation determinants associated with operators in ${L^2(\Omega; d^{n} x)}$ to Fredholm perturbation determinants associated with operators in ${L^2(\partial\Omega; d^{n-1} \sigma)}$ , ${n\in\mathbb{N}}$ , ${n\geq 2}$ . This leads to an extension of a variant of a celebrated formula due to Jost and Pais, which reduces the Fredholm perturbation determinant associated with a Schrödinger operator on the half-line ${(0,\infty)}$ , in the case of local interactions, to a simple Wronski determinant of appropriate distributional solutions of the underlying Schrödinger equation.  相似文献   

19.
We study the entropy flux in the stationary state of a finite one-dimensional sample ${\mathcal{S}}$ connected at its left and right ends to two infinitely extended reservoirs ${\mathcal{R}_{l/r}}$ at distinct (inverse) temperatures ${\beta_{l/r}}$ and chemical potentials ${\mu_{l/r}}$ . The sample is a free lattice Fermi gas confined to a box [0, L] with energy operator ${h_{\mathcal{S}, L}= - \Delta + v}$ . The Landauer-Büttiker formula expresses the steady state entropy flux in the coupled system ${\mathcal{R}_l + \mathcal{S} + \mathcal{R}_r}$ in terms of scattering data. We study the behaviour of this steady state entropy flux in the limit ${L \to \infty}$ and relate persistence of transport to norm bounds on the transfer matrices of the limiting half-line Schrödinger operator ${h_\mathcal{S}}$ .  相似文献   

20.
Correlations of spins in a system of entangled particles are inconsistent with Kolmogorov’s probability theory (KPT), provided the system is assumed to be non-contextual. In the Alice–Bob EPR paradigm, non-contextuality means that the identity of Alice’s spin (i.e., the probability space on which it is defined as a random variable) is determined only by the axis $\alpha _{i}$ chosen by Alice, irrespective of Bob’s axis $\beta _{j}$ (and vice versa). Here, we study contextual KPT models, with two properties: (1) Alice’s and Bob’s spins are identified as $A_{ij}$ and $B_{ij}$ , even though their distributions are determined by, respectively, $\alpha _{i}$ alone and $\beta _{j}$ alone, in accordance with the no-signaling requirement; and (2) the joint distributions of the spins $A_{ij},B_{ij}$ across all values of $\alpha _{i},\beta _{j}$ are constrained by fixing distributions of some subsets thereof. Of special interest among these subsets is the set of probabilistic connections, defined as the pairs $\left( A_{ij},A_{ij'}\right) $ and $\left( B_{ij},B_{i'j}\right) $ with $\alpha _{i}\not =\alpha _{i'}$ and $\beta _{j}\not =\beta _{j'}$ (the non-contextuality assumption is obtained as a special case of connections, with zero probabilities of $A_{ij}\not =A_{ij'}$ and $B_{ij}\not =B_{i'j}$ ). Thus, one can achieve a complete KPT characterization of the Bell-type inequalities, or Tsirelson’s inequalities, by specifying the distributions of probabilistic connections compatible with those and only those spin pairs $\left( A_{ij},B_{ij}\right) $ that are subject to these inequalities. We show, however, that quantum-mechanical (QM) constraints are special. No-forcing theorem says that if a set of probabilistic connections is not compatible with correlations violating QM, then it is compatible only with the classical–mechanical correlations. No-matching theorem says that there are no subsets of the spin variables $A_{ij},B_{ij}$ whose distributions can be fixed to be compatible with and only with QM-compliant correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号