首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用多巴胺的自氧化聚合反应在毛细管内壁引入聚多巴胺涂层,并以聚多巴胺涂层作为连接臂辅助二氧化钛前躯体氟钛酸铵液相沉积制备了二氧化钛涂层毛细管柱。该方法制备过程简单,条件温和,形成的涂层稳固。采用X射线光电子能谱(XPS)、扫描电镜(SEM)和测定电渗流变化对涂层性质进行了表征。选择5种阴离子、生物碱作为分离对象,考察了缓冲液组成、浓度和p H值等因素对该涂层柱毛细管电色谱分离性能的影响。结果显示,在优化条件下,5种阴离子及生物碱在该涂层毛细管柱上均能得到较好的分离。  相似文献   

2.
Differences in the surface charges of bacteria can be exploited for their separation by capillary electrophoresis. Because of their low electrophoretic mobility, the separation is not always easy to perform, especially in the presence of the electroosmotic flow. Elimination of electroosmotic flow by capillary wall modification with γ‐(trimethoxysilyl)propyl methacrylate followed by acrylamide bonding permits separation over a distance of 8.5 cm.  相似文献   

3.
Cycloaliphatic epoxy resin coating for capillary electrophoresis   总被引:3,自引:0,他引:3  
Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were <0.8%. Speed and simplicity are important advantages of the coating procedure compared to other published coating methods.  相似文献   

4.
Electrokinetic-based methods are used in a variety of applications including drug delivery and separation of biomolecules, among others. Many of these applications feature a fibrous or a porous medium that can be modeled by using capillary bundle models to predict the behavior of the electroosmotic flow within the particular system. The role of geometry in predicting volumetric flowrates in porous media is investigated by modeling the electroosmotic flow in idealized capillaries of rectangular, cylindrical, and annular geometries. This is achieved by the coupling of electrostatics and continuum hydrodynamics to obtain analytical expressions that govern the electrokinetically - driven volumetric flow within these idealized capillary geometries. A previous study developed a model to compare the cylindrical and annular capillary geometries by utilizing two methods that compare the areas of the two geometries. The methods used in this previous work will also be used in the present contribution to compare the volumetric flowrates in the cylindrical and annular capillaries with a rectangular capillary. Illustrative results will be presented to aid in the understanding of the influence of the various geometrical and electrostatic parameters that arise from the analysis of these volumetric flowrates. It was found that the electroosmotic volumetric flowrates are significantly affected by the capillary geometry.  相似文献   

5.
A mathematical modelling approach for open-tubular capillary electrochromatography is presented. The spatially one-dimensional model takes into account (i) a coupling of (non)linear adsorption of positively or negatively charged analyte molecules (at a negatively charged capillary inner surface) with the equilibrium electrokinetics at this solid-liquid interface, (ii) mobile phase transport by electroosmosis and pressure-driven flow, as well as (iii) transport of species by electrophoresis and molecular diffusion. Under these conditions the local zeta-potential and electroosmotic mobility become a function of the concentration of the charged analyte. The resulting inhomogeneity of electroosmotic flow through the capillary produces a compensating pore pressure as requirement for incompressible mobile phase flow (i.e., for constant volumetric flow along the capillary). The results of the simulations are discussed in view of the surface-to-volume ratio of the capillary lumen, the analyte concentration (in combination with a Langmuir isotherm for the adsorption process), and buffer effects.  相似文献   

6.
Nonaqueous capillary electrophoresis using a titania-coated capillary   总被引:1,自引:0,他引:1  
In this work, an ordered mesoporous titania film was introduced to coat a capillary by means of the sol-gel technique. Its electroosmotic flow (EOF) property was investigated in a variety of nonaqueous media (methanol, formamide and N,N'-dimethylformamide and mixtures of methanol and acetonitrile). The titania-coated capillary exhibited a distinctive EOF behavior, the direction and magnitude of which were strongly dependent on various parameters such as the solvent composition, apparent pH (pH*) and the electrolytes. The nonaqueous capillary electrophoresis separation of several alkaloids was investigated in the positively charged titania-coated capillary. Comparison of separation between coated and uncoated capillaries under optimal nonaqueous conditions was also carried out.  相似文献   

7.
Qi N  Cui R  You H 《色谱》2011,29(9):881-884
以丙烯酸、2-丙烯酰胺-2-甲基丙磺酸为功能单体,N,N′-亚甲基双丙烯酰胺为交联剂,正十二醇、1,4-丁二醇及二甲基亚砜为致孔剂,偶氮二异丁腈为引发剂,原位聚合制备了丙烯酰胺类强阳离子交换整体柱。考察了驱动电压、有机调节剂、盐浓度、pH值等对电渗流的影响。结果表明,电渗流与驱动电压的线性关系良好,相关系数为0.9981;有机调节剂乙腈对电渗流的影响除与流动相的黏度有关外,还与固定相的溶胀有关,当浓度低时,电渗流随乙腈浓度的增加有反常的下降趋势;随着磷酸盐浓度逐渐增加,电渗流降低,与理论相符;在pH值为3~9范围内,电渗流基本上保持恒定,体现了整体柱使用酸碱范围宽的优越性。在优化的实验条件下,采用毛细管电色谱法在此整体柱上成功分离了5种多肽,体现了该类整体柱在多肽分离研究中的优势,为进一步将其应用于蛋白质分离研究打下了基础。  相似文献   

8.
Capillary electrophoresis connected to electrospray ionization mass spectrometry is a promising combination to analyze complex biological samples. The use of sheathless electrospray ionization interfaces, such as a porous nanoelectrospray capillary emitter, requires the application of forward flow (either by pressure or electroosmosis) to maintain the electrospray process. The analysis of solute molecules with strong negative charges (e.g., aminopyrenetrisulfonate labeled glycans) necessitates a reversed‐polarity capillary electrophoresis separation mode, in which case the electroosmotic flow is counter current, thus pressure assistance is necessary. In this study, we compared the effect of forced convection with and without counter electroosmotic flow on the resulting separation efficiency in capillary electrophoresis based on flow profile simulations by computational fluid dynamics technique and by actual experiments. The efficiencies of the detected peaks were calculated from the resulting electropherograms and found approximately 950 000 plates/m for electrophoresis with counter electroosmotic flow, 20 000 plates/m with pressure only (such as would be in open tubular liquid chromatography), and 480 000 plates/m for electrophoresis with simultaneous counter electroosmotic flow and forward pressure assistance, which validates the simulation data.  相似文献   

9.
Control of the electroosmotic flow (EOF) is critical for achieving optimal separations by capillary electrophoresis. For instance, manipulation of the EOF can yield either high resolution separations or rapid analyses. Dynamic capillary coatings are a simple and cost-effective approach to altering the EOF. The normal EOF can be slowed using buffer additives such as Mg2+ and hexamethonium which ion exchange onto the surface silanols to lower the effective wall charge. Alternatively, cationic polyelectrolytes or cationic surfactants can be used to establish a cationic coating on the capillary wall, which results in a reversed EOF. Practical considerations such as pH stability and reproducibility obtainable with an EOF modifier will be discussed.  相似文献   

10.
Electrolyte composition is critical in optimizing separation and detection of ions by capillary electrophoresis. The parameters which must be considered when designing an electrolyte system for capillary electrophoresis include electrophoretic mobility of electrolyte constituents and analytes, detection mode, and compatibility of electrolyte constituents with one another. An electrolyte system based on pyromellitic acid is well suited for use with indirect photometric detection, and provides excellent separations of anions. The ability to modify the electrophoretic mobility of pyromellitic acid as a function of ph provides flexibility in matching electrophoretic mobilities of analytes. Additionally, the use of alkyl amines as electroosmotic flow modifiers allows the rapid separation of anions by reversing the direction of electroosmotic flow in a fused-silica capillary. The optimization of a capillary electrophoresis electrolyte for anion analysis is also discussed in terms of pH, ionic strength and applied voltage. The effect of organic solvent on separation selectivity is also discussed.  相似文献   

11.
A method for improving separations of peptides and other positively charged species in capillary zone electrophoresis with untreated capillaries using acidic buffers containing tetraalkylammonium cations is described. Tetramethylammonium and tetrabutylammonium cations dynamically modify the capillary surface, leading to a reversal in the direction of the electroosmotic flow. As a result, the adsorption of positively charged peptides and proteins is minimized, and resolution and peak capacity are improved as the migration of cationic analytes is counterbalanced by the electroosmotic flow. The combining effect of reversing electroosmotic flow and cyclodextrin inclusion complexation on separations of closely related peptides and a protein mixture, as well as tryptic digest of hemoglobin is demonstrated.  相似文献   

12.
A version of capillary electrophoresis with indirect spectrophotometric detection and the hydrodynamic suppression of electroosmotic flow is studied. It is shown that, to improve the reliability of ion identification, one should calculate electrophoretic mobilities of ions or migration times corrected with regard to the electroosmotic flow rate. Correlations between electrophoretic peak areas of ions and their electrophoretic mobilities are derived. In the studied version of capillary electrophoresis, the accuracy of measuring anion concentrations can be improved using the internal standard method.  相似文献   

13.
A novel chiral group functionalized metal-organic framework, Cyclodextrin-NH-MIL-53, was synthesized and modified on the inner wall of a capillary column via a post-synthetic process. The prepared chiral metal-organic framework was utilized as a chiral capillary stationary phase and used in an open-tubular capillary electrochromatography method to enantioseparate several racemic amino acids. Excellent enantioseparation of five pairs of enantiomers was obtained in this chiral separation system (Resolutions of D/L-Alanine = 16.844, D/L-Cysteine = 3.617, D/L-Histidine = 9.513, D/L-Phenylalanine = 8.133, and D/L-Tryptophan = 2.778). The prepared Cyclodextrin-NH-MIL-53 and the Cyclodextrin-NH-MIL-53-based capillary columns were characterized by scanning electron microscopy, X-ray diffraction, Fourie-transform infrared spectroscopy, and circular dichroism. The chiral capillary electrochromatography conditions, such as separation conditions, amount of Cyclodextrin-NH-MIL-53, and electroosmotic flow, were optimized. This research is estimated to present a novel insight and method for the design and use of metal-organic framework-based capillaries for enantioseparation.  相似文献   

14.
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.  相似文献   

15.
The influence of the electroosmotic flow profile on the efficiency and resolution of capillary electrophoresis is studied. The mathematical model is formulated and the set of equations is solved numerically. The results of the analysis are applicable to a wide range of buffer concentrations and capillary diameters. The temperature dependence of electrophoretic mobility, viscosity and thermal conductivity and the dependence of electrical conductivity on temperature and ion concentration in the double layer are taken into account. It is shown that there exists a region of buffer concentrations and capillary diameters where the influence of the electroosmotic flow profile on the efficiency and resolution is much greater than that of the temperature dependence of the electrophoretic mobility. The results are especially essential for small buffer concentrations or capillary diameters comparable with the double electrical layer thickness.  相似文献   

16.
Han JH  Chun MS  Riaz A  Chung DS 《Electrophoresis》2005,26(2):480-486
For large-volume stacking with the electroosmotic flow pump (LVSEP) in capillary electrophoresis of anionic analytes it is required that the electroosmotic mobility (EOM) should be smaller than the magnitudes of the effective mobilities of the analytes. When a fused-silica capillary is treated with an acidic solution, the silanoate group on the silica surface is neutralized to silanol and the EOM is suppressed. Due to the slow deprotonation equilibrium of the silanol group at an intermediate pH, this reduced EOM can be retained during a number of electrophoresis runs. Using a bare fused-silica capillary preconditioned with 0.01 M HCl, successful LVSEP at pH 6.0 was achieved for weakly acidic compounds with two orders of magnitude enhancements in the concentration sensitivity. The repeatability in migration times of ten analytes stacked by LVSEP in a single day was excellent with the relative standard deviation (RSD) less than 1% (n = 6). The day-to-day repeatability was also excellent with RSD less than 3% (n = 3 x 6) when the capillary was preconditioned each day.  相似文献   

17.
Ren H. Luo  Huan J. Keh 《Electrophoresis》2020,41(16-17):1503-1508
The electrokinetic flow and accompanied electric conduction of a salt-free solution in the axial direction of a charged circular capillary are analyzed. No assumptions are made about the surface charge density (or surface potential) and electrokinetic radius of the capillary, which are interrelated. The Poisson–Boltzmann equation and modified Navier–Stokes equation are solved for the electrostatic potential distribution and fluid velocity profile, respectively. Closed-form formulas for the electroosmotic mobility and electric conductivity in the capillary are derived in terms of the surface charge density. The relative surface potential, electroosmotic mobility, and electric conductivity are monotonic increasing functions of the surface charge density and electrokinetic radius. However, the rises of the relative surface potential and electroosmotic mobility with an increase in the surface charge density are suppressed substantially when it is high due to the effect of counterion condensation. The analytical prediction that the electroosmotic mobility grows with increases in the surface charge density and electrokinetic radius agrees with the experimental results for salt-free solutions in circular microchannels in the literature.  相似文献   

18.
A new procedure for coating capillaries for capillary electrophoresis applying a sapphire (alumina) containing epoxy resin was developed. Coated capillaries showed considerably reduced electroosmotic flow, and decreased the adsorption of proteins to the internal wall of the capillary. Coating is transparent down to 195 nm and can be used with advantage to analyze different kinds of substances, such as small cations and/or anions, and proteins.  相似文献   

19.
A study was carried out in which 50 microm I.D. fused-silica capillaries were packed with 3 microm octadecylsilane bonded silica, from the same batch, by four methods; liquid slurry and carbon dioxide supercritical carrier, each with and without the use of an ultrasonic probe. A neutral test mixture was analysed by capillary column in reversed-phase mode, and the reproducibility of the electroosmotic flow and of migration time, column efficiency and retention factors, was determined. Initially results suggested that there was no significant difference between properties of columns packed by different methods, and a more thorough statistical evaluation confirmed this; differences observed in the column performance were attributed to random variations between replicate columns, and not between packing methods. However, the variation was least when applying the ultrasonication during liquid slurry.  相似文献   

20.
In the present study, theoretical model for the transient response of a capillary flow under the combined effects of electroosmotic and capillary forces at low Reynolds number is presented. The governing equation is derived based on the balance among the electrokinetic, surface, viscous and gravity forces. A non-dimensional transient governing equation for the penetration depth as a function of time is obtained by normalizing the viscous, gravity and electroosmotic forces with surface tension force. A new non-dimensional group for the electroosmotic force, Eo, is obtained through the non-dimensional analysis. This new non-dimensional group is a representation of combined electroosmosis and surface tension, i.e., capillarity. The numerical solution of governing equation is obtained to study the effect of different operating parameters on the flow front transport. In a combined flow, it is observed that the flow with positive and low negative magnitude Eo numbers, the attainment of equilibrium penetration depth is similar to a capillary flow. In case of high negative magnitude Eo numbers, complete filling of the channel is observed. The electrolyte with lower permittivity delays the progress of the flow front whereas a large EDL transports the electrolyte quickly. Higher viscous and gravity forces also delay the transport process in the combined flow. This model suggests that in combined flow the electrokinetic parameters also play an important role on the capillary flow and experiments are required to confirm this electrokinetic effect on capillary transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号