首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results from stochastic reconstruction of porous solids and from a direct comparison of calculated and experimental effective transport properties are presented. Eight porous solids of different microstructures were selected to evaluate the performance of two reconstruction methods based on simulated annealing. The common method was constrained by the two-point probability function and the lineal-path function for the void phase, whilst the constraints of our new method were further supplemented by the lineal-path function for the solid phase and by two adjustable parameters. The new method was capable of reproducing the void and solid phases as large clusters spanning the entire replicas. Non-percolating clusters formed minor volume fractions of both phases. Although the common method reproduced the microstructures quite well, their pore space connectivity was significantly poorer. Therefore, effective permeability, effective ordinary diffusivity, and effective Knudsen diffusivity calculated for the replicas obtained using the new method were always much greater than the same quantities related to the common reconstruction method. For most of the porous solids, values of the effective properties calculated on the basis of the new reconstruction method better matched their experimental counterparts than the corresponding values derived from the microstructures reproduced using the common reconstruction method.  相似文献   

2.
The construction of a faithful 3D pore space model of a porous medium that could reproduce the macroscopic behavior of that medium is of great interest in various fields including medicine, material science, hydrology and petroleum engineering. A computationally efficient algorithm is developed that uses the probability perturbation method and sequential multiple-point statistics simulations to generate 3D stochastic and equiprobable representations of random porous media when only a 2D thin section image is available. By employing the probability perturbation method as a gradual deformation technique, the pore patterns of a single 2D image are deformed to generate a series of 2D stochastically simulated images. The 3D pore structure is then generated by simply stacking the 2D-simulated images. The quality of the 3D reconstruction is critically dependent on the rate of deformation and a simple general procedure for choosing this parameter is presented. Various criteria such as porosity, two-point auto-correlation function, multiple-point connectivity function, local percolation probability, absolute permeability obtained by lattice-Boltzmann method (LBM), formation factor and two-phase relative permeability calculations are used to validate the results. The method is tested on two random porous solids; Berea Sandstone and synthetic Silica, for which directly measured 3D micro-CT images are available. The stochastically reconstructed 3D pore space preserves the low- and high-order spatial statistics, the macroscopic flow properties and the microstructure of the 3D micro-CT images.  相似文献   

3.
Understanding the connection between pore structure and NMR behavior of fluid-saturated porous rock is essential in interpreting the results of NMR measurements in the field or laboratory and in establishing correlations between NMR parameters and petrophysical properties. In this paper we use random-walk simulation to study NMR relaxation and time-dependent diffusion in 3D stochastic replicas of real porous media. The microstructures are generated using low-order statistical information (porosity, void–void autocorrelation function) obtained from 2D images of thepore space. Pore size distributions obtained directly by a 3D pore space partitioning method and indirectly by inversion of NMR relaxation data are compared for the first time. For surface relaxation conditions typical of reservoir rock, diffusional coupling between pores of different size is observed to cause considerable deviations between the two distributions. Nevertheless, the pore space correlation length and the size of surface asperity are mirrored in the NMR relaxation data for the media studied. This observation is used to explain the performance of NMR-based permeability correlations. Additionally, the early time behavior of the time-dependent diffusion coefficient is shown to reflect the average pore surface-to-volume ratio. For sufficiently high values of the self-diffusion coefficient, the tortuosity of the pore space is also recovered from the long-time behavior of the time-dependent diffusion coefficient, even in the presence of surface relaxation. Finally, the simulations expose key limitations of the stochastic reconstruction method, and allow suggestions for future development to be made.  相似文献   

4.
A new stochastic method of reconstructing porous media   总被引:1,自引:0,他引:1  
We present a new stochastic method of reconstructing porous medium from limited morphological information obtained from two-dimensional micro- images of real porous medium. The method is similar to simulated annealing method in the capability of reconstructing both isotropic and anisotropic structures of multi-phase but differs from the latter in that voxels for exchange are not selected completely randomly as their neighborhood will also be checked and this new method is much simpler to implement and program. We applied it to reconstruct real sandstone utilizing morphological information contained in porosity, two-point probability function and linear-path function. Good agreement of those references verifies our developed method’s powerful capability. The existing isolated regions of both pore phase and matrix phase do quite minor harm to their good connectivity. The lattice Boltzmann method (LBM) is used to compute the permeability of the reconstructed system and the results show its good isotropy and conductivity. However, due to the disadvantage of this method that the connectivity of the reconstructed system’s pore space will decrease when porosity becomes small, we suggest the porosity of the system to be reconstructed be no less than 0.2 to ensure its connectivity and conductivity.  相似文献   

5.
The heterogeneous pore space of porous media strongly affects the storage and migration of oil and gas in the reservoir. In this paper, the cross-correlation-based simulation (CCSIM) is combined with the three-step sample method to reconstruct stochastically 3D models of the heterogeneous porous media. Moreover, the two-point and multiple-point connectivity probability functions are used as vertical constraint conditions to select the boundary points of pore and matrix, respectively. The heterogeneities of pore spaces of four rock samples are investigated, and then our methods are tested on the four samples. Quantitative comparison is made by computing various statistical and petrophysical properties for the original samples, as well as the reconstructed model. It was found that the results from CCSIM-TSS are obviously better than that from CCSIM. Finally, the analysis of the distance (ANODI) was used to measure of the variability between the realizations of the four rock samples. The results demonstrated that the results from CCSIM-TSSmp are better than that from CCSIM-TSStp as the complexity of connectivity and heterogeneities of pore spaces increase.  相似文献   

6.

An elementary question in porous media research is in regard to the relationship between structure and function. In most fields, the porosity and permeability of porous media are properties of key interest. There is, however, no universal relationship between porosity and permeability since not only does the fraction of void space matter for permeability but also the connectivity of the void fraction. With the evolution of modern day X-ray microcomputed tomography (micro-CT) and advanced computing, it is now possible to visualize porous media at an unprecedented level of detail. Approaches in analyzing micro-CT data of porous structures vary in the literature from phenomenological characterization to network analysis to geometrical and/or topological measurements. This leads to a question about how to consistently characterize porous media in a way that facilitates theoretical developments. In this effort, the Minkowski functionals (MF) emerge from the field of statistical physics where it is evident that many physical processes depend on the geometry and topology of bodies or multiple bodies in 3D space. Herein we review the theoretical basis of the MF, mathematical theorems and methods necessary for porous media characterization, common measurement errors when using micro-CT data and recent findings relating the MF to macroscale porous media properties. This paper is written to provide the basics necessary for porous media characterization and theoretical developments. With the wealth of information generated from 3D imaging of porous media, it is necessary to develop an understanding of the limitations and opportunities in this exciting area of research.

  相似文献   

7.
Porous materials such as sandstones have important applications in petroleum engineering and geosciences. An accurate knowledge of the porous microstructure of such materials is crucial for the understanding of their physical properties and performance. Here, we present a procedure for accurate reconstruction of porous materials by stochastically fusing limited bimodal microstructural data including limited-angle X-ray tomographic radiographs and 2D optical micrographs. The key microstructural information contained in the micrographs is statistically extracted and represented using certain lower-order spatial correlation functions associated with the pore phase, and a probabilistic interpretation of the attenuated intensity in the tomographic radiographs is developed. A stochastic procedure based on simulated annealing that generalizes the widely used Yeong–Torquato framework is devised to efficiently incorporate and fuse the complementary bimodal imaging data for accurate microstructure reconstruction. The information content of the complementary microstructural data is systematically investigated using a 2D model system. Our procedure is subsequently applied to accurately reconstruct a variety of 3D sandstone microstructures with a wide range of porosities from limited X-ray tomographic radiographs and 2D optical micrographs. The accuracy of the reconstructions is quantitatively ascertained by directly comparing the original and reconstructed microstructures and their corresponding clustering statistics.  相似文献   

8.
In this study, we have developed a new method to generate a multi-directional pore network for representing a porous medium. The method is based on a regular cubic lattice network, which has two elements: pore bodies located at the regular lattice points and pore throats connecting the pore bodies. One of the main features of our network is that pore throats can be oriented in 13 different directions, allowing a maximum coordination number of 26 that is possible in a regular lattice in 3D space. The coordination number of pore bodies ranges from 0 to 26, with a pre-specified average value for the whole network. We have applied this method to reconstruct real sandstone and granular sand samples through utilizing information on their coordination number distributions. Good agreement was found between simulation results and observation data on coordination number distribution and other network properties, such as number of pore bodies and pore throats and average coordination number. Our method can be especially useful in studying the effect of structure and coordination number distribution of pore networks on transport and multiphase flow in porous media systems.  相似文献   

9.
10.
This study investigates the overall and local response of porous media composed of a perfectly plastic matrix weakened by stress-free voids. Attention is focused on the specific role played by porosity fluctuations inside a representative volume element. To this end, numerical simulations using the Fast Fourier Transform (FFT) are performed on different classes of microstructure corresponding to different spatial distributions of voids. Three types of microstructures are investigated: random microstructures with no void clustering, microstructures with a connected cluster of voids and microstructures with disconnected void clusters. These numerical simulations show that the porosity fluctuations can have a strong effect on the overall yield surface of porous materials. Random microstructures without clusters and microstructures with a connected cluster are the hardest and the softest configurations, respectively, whereas microstructures with disconnected clusters lead to intermediate responses. At a more local scale, the salient feature of the fields is the tendency for the strain fields to concentrate in specific bands. Finally, an image analysis tool is proposed for the statistical characterization of the porosity distribution. It relies on the distribution of the ‘distance function’, the width of which increases when clusters are present. An additional connectedness analysis allows us to discriminate between clustered microstructures.  相似文献   

11.
12.
 This paper deals with the evaporation heat transfer mechanism in thin biporous media that have two characteristic capillary pore radii. The character of the two levels of pore sizes allows the liquid phase to easily occupy the void space of the small pores and vapor phase to occupy the void space of the big pores. Compared with mono-porous media, biporous media increase the number of small evaporating menisci with high heat transfer performance. Evaporation heat transfer in pores of porous media is analyzed in detail. The results indicate that the average heat transfer coefficient increases with the capillary pore size reduction. Under the assumption of the uniform structure of biporous media, a calculation method to predict heat transfer performance for the evaporation in thin biporous media is given. The preliminary results reflect the behavior of observed vaporization heat transfer in thin biporous media well. Received on 22 February 2000  相似文献   

13.
A method of 3-D stochastic reconstruction of porous media based on statistical information extracted from 2-D sections is evaluated with reference to the steady transport of electric current. Model microstructures conforming to measured and simulated pore space autocorrelation functions are generated and the formation factor is systematically determined by random walk simulation as a function of porosity and correlation length. Computed formation factors are found to depend on correlation length only for small values of this parameter. This finding is explained by considering the general percolation behavior of a statistically homogeneous system. For porosities lower than about 0.2, the dependence of formation factor on porosity shows marked deviations from Archie's law. This behavior results from the relatively high pore space percolation threshold (0.09) of the simulated media and suggests a limitation to the applicability of the method to low porosity media. It is additionally demonstrated that the distribution of secondary porosity at a larger scale can be simulated using stochastic methods. Computations of the formation factor are performed for model media with a matrix-vuggy structure as a function of the amount and spatial distribution of vuggy porosity and matrix conductivity. These results are shown to be consistent with limited available experimental data for carbonate rocks.  相似文献   

14.
This article presents the analytical study of fluid flow in a porous medium presenting pores of two different length scales: at the smallest or microscopic scale, the presence of connected voids confers a porous medium structure to the material investigated, while at the upper or mesoscopic scale, occluded macro-pores are present. This microstructure is employed to represent the progressive opening of inter-aggregate pore spaces observed in natural compacted montmorillonites polluted by heavy metal ions. Three-dimensional analytical expressions are rigorously derived for the pore fluid velocity and excess pore fluid pressure within the porous matrix, around an occluded ellipsoidal inter-aggregate void. The eccentricity ratio is employed to characterize the geometrical shape of the ellipsoidal void, while its size is characterized by the macro-porosity. Confrontations are made with numerical solutions in order to investigate the applicability of the analytical pressure and velocity solutions to microstructures of finite size.  相似文献   

15.
We present a process based method for reconstructing the full three-dimensional microstructure of sandstones. The method utilizes petrographical information obtained from two-dimensional thin sections to stochastically model the results of the main sandstone forming processes – sedimentation, compaction, and diagenesis. We apply the method to generate Fontainebleau sandstone and compare quantitatively the reconstructed microstructure with microtomographic images of the actual sandstone. The comparison shows that the process based reconstruction reproduces adequately important intrinsic properties of the actual sandstone, such as the degree of connectivity, the specific internal surface, and the two-point correlation function. A statistical reconstruction of Fontainebleau sandstone that matches the porosity and two-point correlation function of the microtomography data differs strongly from the actual sandstone in its connectivity properties. Transport properties of the samples are determined by solving numerically the local equations governing the transport. Computed permeabilities and formation factors of process based reconstructions of Fontainebleau sandstone compare well with experimental measurements over a wide range of porosity.  相似文献   

16.
In previous works, we have described a void space reconstruction method based on non-wetting fluid intrusion, wetting fluid drainage, and image analysis data. The method has been applied to a wide range of substances, including sandstone, compressed and sintered powders, paper substrates and coatings, soil and fibrous mats. We have also demonstrated in a previous work that the spatial correlation of similarly sized voids within inhomogeneous porous media has a huge effect on permeability. We therefore describe a method of measuring such correlation, suitable for use in our void space reconstructions. The method involves a cubic spline smoothing of a variogram of the void sizes in a binary image of the porous medium. It has been successfully tested on an artificially correlated void network, comprising two sintered glass discs of different void size ranges. Stereological effects, caused by the off-centre sectioning of voids, can interfere with the variogram features. Our method is sh own to be insensitive to artificially generated stereological interference. The method is also applied to sandstone samples.  相似文献   

17.
The basic aim of this work is to present a combination of techniques for the reconstruction of the porous structure and the study of transport properties in porous media. The disordered structure of porous systems like random sphere packing, Vycor glass and North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk and the Vycor matrices by a stochastic reconstruction technique. The transport properties (Knudsen diffusivity, molecular diffusivity and permeability) of the resulting 3-dimensional binary domains are investigated through computer simulations. Furthermore, physically sound spatial distributions of two phases filling the pore space are determined by the use of a simulated annealing algorithm. The wetting and the non-wetting phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The effective diffusivities of the resulting domains are then computed and a parametric study with respect to the pore volume fraction occupied by each phase is performed. Reasonable agreement with available data is obtained in the single- and multi-phase transport cases.  相似文献   

18.
19.
Morphological measurements in 3D for pore space characterization (connectivity pore-body/throat classification, shape factors, virtual fluid intrusion) are based on computed intensive digital-thinning operations for skeletonization and medial axis extraction from 3D digital images. We present an alternative method that is measurably faster and allows sub-voxel definition of the pore space network. The method allows extracting—based on morphological considerations only—the centered and shortest stream-lines—i.e., the paths—to follow in order to go through the pore space from one given point to another and to exit. In addition the method penalizes long and narrow pore-throats in favor of short stubby/ones—i.e., it has a built-in exemplification capacity. It exploits well-established mathematical methods successfully applied in medical endoscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号