首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
Poly(phenylene sulfide) (PPS)/poly(butylene terephthalate) (PBT) (60/40 w/w) blend nanocomposites (PPS/PBTs) were prepared by direct melt compounding of PPS, PBT, and organoclay. The morphology and rheology of PPS/PBTs were investigated using scanning electron microscope and transmission electron microscope as well as parallel plate rheometer. The intercalated clay tactoids are selectively located in the continuous PBT phase due to their nice affinity. A novel morphology evolution of the immiscible blend matrices is observed with increase of clay loadings. Small addition of clay increases the discrete PPS spherulite domain size. With increasing loading levels, the PPS phase transform to the fibrous structure and finally, to the partial laminar structure at the high loading levels, in which shows a characteristic of large‐scaled phase separation. The presence of clay, however, does not impede the coalescence of the PPS phase because the phase size increases with increasing clay loadings. The elasticity and blend ratio of two matrices are proposed as the important roles on the morphological evolution. Moreover, the laminar structure of PPS phase is very sensitive to the steady shear flow and is easy to be broken down to spherulite droplet at the low shear rate. However, high shear level is likely to facilitate the coalescence of those PPS phase and finally to phase inversion, both contributing to increases of the dynamic modulus after steady shear flow. In conclusion, the morphology of the immiscible polymer blend nanocomposites depends strongly on both the clay loadings and shear history. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1265–1279, 2008  相似文献   

2.
Achieving low friction and wear of poly(phenylene sulfide)(PPS) without using fillers or blending is a challenging task, but one of considerable practical importance. Here we describe how neat PPS with high tribological performance is achieved by manipulating processing parameters(pressure, flow and temperature). The key to achieving high tribological performance is comparatively high molecular chain orientation, realized in neat PPS, at high shear rates and low pressure. The friction coefficient and wear rate are as low as ~0.3 and~10-6 mm3·N-1·m-1, respectively, which break the record for neat PPS. These values are even better than those for PPS-based blends and comparable to PPS composites. Further studies show, for the first time, that wear rate decreases exponentially with increasing molecular chain orientation, prompting us to revise the classical Archard's law by including the effect of molecular chain orientation. These findings open the possibility of using neat PPS in highly demanding tribological applications.  相似文献   

3.
Biodegradable poly(propylene carbonate) (PPC)/epoxidized soybean oil (ESO) blends with different component ratios were prepared by melt blending to improve the performance of PPC.The phase morphology,thermal properties,rheological properties and mechanical properties of the blends were investigated in detail.SEM examination revealed good interfacial adhesion between PPC matrix and ESO.According to DSC and DMA,as the content of ESO increased,the glass transition temperature of the PPC component increased,indicating that there was a strong interfacial interaction between the PPC matrix and ESO.The interracial interaction may be caused by ring-opening reaction between the hydroxyl end groups of PPC and the epoxy groups of ESO,which restricted the chain movement of PPC matrix.The disappearance of the epoxy groups in FTIR indicated that the interfacial interaction between the two phases was due to the ring-opening reaction between PPC and ESO.With the addition of ESO,the thermal stabilities were enhanced.With the increasing ESO content,the modulus gradually decreased.However,the strength at yield,the strength at break and the elongation at break were increased for the PPC/ESO blends,suggesting that the enhancement of the strength and toughness of PPC was achieved by the incorporation of ESO.The rheological measurement revealed that the complex viscosity,storage modulus and loss modulus of PPC were increased with the increasing ESO content at low frequency,which indicated that the addition of ESO enhanced the melt strength of PPC instead of plasticizing PPC.  相似文献   

4.
采用扫描电镜、光学显微镜和光散射仪研究了环氧化聚丁二烯-聚苯乙烯嵌段共聚物(EBS)对聚苯醚(PPO)/双酚A型环氧树脂(DGEBA)/4,4’-二(2,6-二甲基苯胺基)甲烷(DIM-DDM)体系反应诱导相分离行为的影响. 实验结果表明, EBS的加入对PPO/DGEBA/DIM-DDM体系反应诱导相分离的演化过程有阻滞作用. 随着EBS加入量的增加, 体系形成双连续相结构所需的PPO含量范围变宽, 而对于相同PPO含量、形成双连续相的体系则相结构尺寸减小.  相似文献   

5.
通过熔融共混法制备了聚乳酸/微生物产β-羟基丁酸酯与β-羟基己酸共聚物的共混物(PLA/PHBHHx)。采用拉伸力学试验研究了共混物的力学性能。通过土壤悬浊培养降解法和扫描电子显微镜(SEM)分析对共混材料的生物降解性能进行了研究。实验结果表明,随着PHBHHx含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高。但是,在175h之前,重量组成比为20/80的共混物降解速率比纯PHBHHx还要快。综合分析表明,共混材料PLA/PHBHHx的重量比为20/80时,具有优良的力学性能和生物降解性。  相似文献   

6.
通过熔融共混法制备了聚乳酸/微生物产β-羟基丁酸酯与β-羟基己酸共聚物的共混物(PLA/PHBHHx).采用拉伸力学试验研究了共混物的力学性能.通过土壤悬浊培养降解法和扫描电子显微镜(SEM)分析对共混材料的生物降解性能进行了研究.实验结果表明,随着PHBHHx含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高.但是,在175h之前,重量组成比为20/80的共混物降解速率比纯PHBHHx还要快.综合分析表明,共混材料PLA/PHBHHx的重量比为20/80时,具有优良的力学性能和生物降解性.  相似文献   

7.
Sodium alginate (SA) was blended with varying amounts of poly(ethylene glycol) (PEG) viz., 10, 20, 30, 40 and 50 wt % by using water as a solvent. The obtained SA/PEG blends have been characterized for thermal behavior by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) and surface morphology by scanning electron microscopic (SEM) methods. DSC analysis indicates the increase in glass transition temperature (Tg) of the blends with an increase in PEG content in the blend, which is due to chain entanglement. TGA results reveal the enhancement of thermal stability of SA/PEG blends in terms of the onset of degradation and percentage of weight loss. SEM photomicrographs shows the two phase morphology. This result indicates the immiscible nature of the SA/PEG blends.  相似文献   

8.
Binary blends of poly (ether sulphone) (PES) and Nylon-6 were prepared in a whole range of composition by melt extrusion. Miscibility behaviour of the blends were studied using thermal analytical techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Due to the rapid crystallization of Nylon-6 as it is cooled from the melt state, its glass transition behaviour could not be detected even in the quenched samples by DSC. Furthermore, the crystallization and melting behaviour of the blends have been studied by DSC. DMA results show that the dynamic storage modulus of the blends were in-between those of the constituent polymers. Also the glass transition of Nylon-6 phase as determined by the peak in loss tangent remains constant which shows that the two polymers are immiscible. Thermal expansion coefficient of the blends as determined by TMA is greater than that of Nylon-6 signifying the increased dimensional stability of the blends at higher temperatures. Morphological studies done by scanning electron microscopy (SEM) show the biphasic nature of the blends, with clear cut boundaries between the phases because of poor interfacial adhesion. Dispersed particle size is small when Nylon-6 is the dispersed phase because of its lower melt viscosity as compared to PES. Thermal stability of the blends was measured using thermogravimetric analysis (TG). Two-step decomposition behaviour was observed because of macro-phase separated morphology. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
碳纳米管改性聚苯硫醚熔纺纤维的结构与性能研究   总被引:1,自引:0,他引:1  
将多壁碳纳米管(MWCNTs)和聚苯硫醚(PPS)经过熔融挤出后制备成复合材料切片,并采用熔融纺丝法制得碳纳米管改性聚苯硫醚复合纤维.采用扫描电镜(SEM)、拉曼光谱、示差扫描量热分析(DSC)、动态机械分析(DMA)以及力学性能测试等表征手段研究了复合纤维中碳管的分散状态,与基体的界面作用,复合纤维的结晶性能以及力学性能,从而探讨了聚苯硫醚/碳纳米管复合纤维体系的微观结构与宏观性能之间的关系.研究表明,聚苯硫醚分子结构与碳纳米管之间具有的π-π共轭作用使碳管较为均匀的分散在基体中,界面结合较为紧密.同时熔融纺丝过程中的拉伸作用使碳管进一步解缠并使碳管沿纤维拉伸方向取向.另一方面,拉曼光谱显示拉伸作用有效地增强了界面作用,有利于外界应力的传递.碳管的良好分散以及强的界面作用使复合纤维力学性能得到大幅度的提高,当碳管含量达到5 wt%时,复合纤维的模量有了明显的提高,拉伸强度较纯PPS纤维提高了近220%.  相似文献   

10.
酞侧基聚芳醚砜(PES-C)与聚苯硫醚(PPS)具有部分相容性,虽然PPS的强度和韧性均低于PES-,但PPS含量为2%~10%的PES-C/PPS共混物在保持PES-C原有强度,断裂伸长率的同时,模量略增,冲击强度有很大幅度提高,熔融指数亦蛔。  相似文献   

11.
The morphology and crystallization behavior of poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) blends compatibilized with graft copolymers were investigated. PPS‐blend‐PET compositions were prepared in which the viscosity of the PPS phase was varied to assess the morphological implications. The dispersed‐phase particle size was influenced by the combined effects of the ratio of dispersed‐phase viscosity to continuous‐phase viscosity and reduced interfacial tension due to the addition of PPS‐graft‐PET copolymers to the blends. In the absence of graft copolymer, the finest dispersion of PET in a continuous phase of PPS was achieved when the viscosity ratio between blend components was nearly equal. As expected, PET particle sizes increased as the viscosity ratio diverged from unity. When graft copolymers were added to the blends, fine dispersions of PET were achieved despite large differences in the viscosities of PPS and PET homopolymers. The interfacial activity of the PPS‐graft‐PET copolymer appeared to be related to the molecular weight ratio of the PPS homopolymer to the PPS segment of the graft copolymer (MH/MA). With increasing solubilization of the PPS graft copolymer segment by the PPS homopolymer, the particle size of the PET dispersed phase decreased. In crystallization studies, the presence of the PPS phase increased the crystallization temperature of PET. The magnitude of the increase in the PET crystallization temperature coincided with the viscosity ratio and extent of the PPS homopolymer solubilization in the graft copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 599–610, 2000  相似文献   

12.
The blends of poly(hydroxyether of bisphenol A) (phenoxy) and poly(vinyl acetate) (PVAc) were prepared through in situ polymerization, i.e., the melt polymerization of diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of PVAc. The polymerization reaction started from the initial homogeneous ternary mixture of PVAc/DGEBA/bisphenol A; the phase separation induced by reaction occurred as the polymerization proceeded. The phenoxy/PVAc blends with PVAc content up to 20 wt % were obtained and were further characterized by the solubility, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM). The results indicate that no intercomponent reaction occurred during the in situ polymerization. All the blends display separate glass transition temperatures (Tg's); the very fine phase-separated morphology was obtained by this polymerization blending method. Mechanical tests show that the prepared blends exhibited substantial improvement of mechanical properties, especially in impact strength, which could be ascribed to the formation of the fine phase-separation morphology during in situ polymerization. The thermogravity analysis (TGA) of the blends showed that the thermal stability of the PVAc-rich phases in the blends was enhanced in comparison to the pure PVAc due to the synergistic contribution of the two phases in energy transportation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2329–2338, 1999  相似文献   

13.
Blends of Poly(lactic acid) with Thermoplastic Acetylated Starch   总被引:1,自引:0,他引:1  
Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of Tg by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPS content, the elongation at break and impact strength were increased. The elongation at break increased from...  相似文献   

14.
Blends of carboxyl functionalized poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) were shown to undergo an ester interchange reaction during melt blending. Pendent carboxyl functionality randomly incorporated along the PPS chain reacts with the ester moiety of PET to form a graft copolymer. A model compound, 2,4-bis(phenylthio benzoic acid), has been synthesized to assist in defining the level of carboxyl functionality on the PPS chain. Evidence of the grafting reaction has been gathered from infrared spectroscopy, solubility measurements, and electron microscopy. When added to blends of PPS and PET homopolymers, the graft copolymer significantly reduces the average domain size of the dispersed phase across the entire composition range. This study describes the role that graft copolymers formed by ester interchange reactions can play in compatibilizing this immiscible blend system, with particular focus on the conditions leading to increased grafting efficiency. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3473–3485, 1999  相似文献   

15.
We synthesized hyperbranched poly(phenylene sulfide) (HPPS) in a simple “one‐pot” way by condensation of potassium 2,4‐dichlorlbenzenthiol. The molecular masses (Mw) of the polymers obtained under the conditions of this work were from 6 × 103 to 1 × 105. XRD pattern indicated substantial loss in crystallinity in HPPS. There was a minimum in the relation of intrinsic viscosity of HPPS in tetrahydrofuran (THF), determined by Ubbelohde viscometer, to molecular mass. Thermal analysis revealed that the HPPSs were very stable with the onset degradation temperature above 400 °C, and remaining weight of about 60% at 800 °C in nitrogen. The maximum emission wavelength of HPPS in THF was about 460 nm, which would red‐shift with the increase of molecular mass or concentration. The quenching behavior of the fluorescence in HPPS quenched by Cu2+ obeyed the Stern–Volmer equation, , where F0 and F are the fluorescence intensity at the reference condition free of quencher and at condition with a quencher concentration of CCu2+, respectively, and k is a constant. The quenching efficiency was still as high as about 20% at Cu2+ concentration of about 10 ppm. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 826–831, 2006  相似文献   

16.
The rigid amorphous phase of semicrystalline poly(phenylene sulfide) (PPS) has been studied as a function of thermal history using scanning calorimetry, dielectric relaxation, density, and small-angle x-ray scattering (SAXS). Based on the new heat of fusion of perfect crystalline PPS, which is 26.7±0.8 cal/gram, the weight fraction of rigid amorphous phase is shown to be nearly twice as large as previously reported [1]. The mass fraction of the rigid amorphous phase ranges from 0.24 to 0.42 and is dependent upon thermal treatment. We have taken the approach of assuming a three-phase model for the morphology of semicrystalline PPS consisting of crystalline lamellae, mobile amorphous, and rigid amorphous components. Using this three-phase model, we determine that the average density of the rigid amorphous fraction is 1.325 g/cc, which is slightly larger than the density of the mobile amorphous phase fraction and was insensitive to thermal history. From the SAXS long period, the layer thicknesses of the mobile amorphous phase, rigid amorphous phase, and crystal lamellae were estimated. Only the lamellar thickness shows a systematic variation with thermal history, increasing with melt or cold crystallization temperature, or with decreasing cooling rate.  相似文献   

17.
为考察离子液体对淀粉/聚丁二酸丁二醇酯(PBS)的作用效果,降低淀粉/PBS的脆性,以离子液体(1-丁基-3-甲基咪唑氯盐[BMIM]Cl)作为增塑改性剂通过熔融共混法制备了玉米淀粉/聚丁二酸丁二醇酯(PBS)共混材料,采用红外光谱(FTIR)、扫描电镜(SEM)、热重分析(TGA)、X射线衍射分析(XRD)及力学性能测试方法研究了[BMIM]Cl对淀粉/PBS共混材料结构和性能的影响.结果表明,[BMIM]Cl能与淀粉/PBS分子发生强相互作用,破坏淀粉/PBS共混物中原有的氢键与结晶结构,增强界面相互作用,改善相容性,进而改变淀粉/PBS共混材料的结构与性能;[BMIM]Cl的加入不影响淀粉/PBS的热稳定性,可使材料玻璃化转变温度(Tg)、结晶温度(Tc)、冷结晶温度(Tcc)及结晶度(Xc)降低.[BMIM]Cl具有显著降低淀粉/PBS脆性的作用,使其断裂伸长率大幅度增加,拉伸强度和弹性模量降低.  相似文献   

18.
Polylactic acid (PLA) and thermoplastic starch (TPS) are known as bio‐based and biodegradable thermoplastic polymers that can be used in different applications owing to their inherent physical and mechanical properties. In order to reduce the higher costs of PLA and tuning its physical and mechanical properties suitable for short life packaging applications, blending of PLA with the TPS, more economical biodegradable polymer, has been considered in academic and industrial researches. However, melt blending of PLA with TPS without compatibilization process caused some drawbacks such as coarsening morphology and declining mechanical properties and ductility because of thermodynamic immiscibility, which may restrict its usage in packaging applications. Subsequently, our approach in this research is compatibilization of PLA/TPS blends by utilization of primary well tuning of TPS formulation with a combination of sorbitol and glycerol plasticizers. In this work, the wide composition range of melt mixed PLA/TPS blends was prepared using a laboratory twin screw extruder. The effects of microstructure on the rheological and mechanical properties of PLA/TPS blends were studied using different methods such as scanning electron microscopy (SEM) images, contact angle, oscillatory shear rheological measurements, and tensile and impact strength mechanical tests. The rheological and mechanical properties were interpreted according to the morphological features and considering the possibility of plasticizer migration from TPS to PLA phase during melt blending. Reduction in complex viscosity and storage modulus of PLA matrix samples indicates the improved melt processability of blends. Finally, in comparison with mechanical results reported in literature, our simple approach yielded the blends with elastic modulus and ductility comparable with those of chemically compatibilized PLA/TPS blends.  相似文献   

19.
采用扫描电镜、光学显微镜和光散射仪研究了环氧化聚丁二烯一聚苯乙烯嵌段共聚物(EBs)对聚苯醚(PPO)/双酚A 型环氧树脂(DGEBA)/4,4二(2,6-二甲基苯胺基)甲烷(DIM-DDM)体系反应诱导相分离行为的影响.实验结果表明,EBS的加入对PPo/DGEBA/DIM-DDM体系反应诱导相分离的演化过程有阻滞作用.随着EBS加入量的增加,体系形成双连续相结构所需的PPO含量范围变宽,而对于相同PPO含量、形成双连续相的体系则相结构尺寸减小.  相似文献   

20.
Melt blending was employed to prepare thermoplastic elastomer (TPE) of reclaimed rubber (RR) and high density polyethylene (HDPE). Mechanical properties of TPE samples were improved in different methods including dynamic vulcanization and reactive blending (reactive compatibilization) during melt mixing in an internal Haake mixer. The physical and mechanical properties of the TPE blends were investigated by the dynamic mechanical analysis (DMA) and tensile tests. The thermal behavior was characterized by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The phase morphology of the blends was studied by scanning electron microscopy (SEM). Experimental results showed that, both static and dynamic mechanical properties of reactively-compatibilized and dynamically-vulcanized samples improved significantly compared with the virgin samples. The effect of dynamic-vulcanization and reactivecompatibilization on the mechanical properties revealed that the Young’s modulus and storage modulus increased with both improvement methods. SEM results showed that, dynamic-vulcanization and reactivecompatibilization methods improved the distribution of RR particles in HDPE matrix. Although both methods improved the thermal and mechanical properties of the HDPE/RR blends, dynamic-vulcanization was more effective and promising approach due to the higher properties of HDPE/RR blends prepared by this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号