首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨树涛  林智信  蔡汝秀  甘南琴 《中国化学》2002,20(10):1019-1024
IntroductionOscillatingreactionsarecomplexdynamicsystemsthatinvolveperiodicchangesintheconcentrationofsomeingredients (whetherareactant,aproductoraninterme diate)withtime .Thesimilaritiesbetweenlifeprocessesthatexhibitoscillatingbehaviorandoscillatingch…  相似文献   

2.
The principal methods for the synthesis of highly luminescent core–shell colloidal quantum dots (QDs) of the most widely used CdSe, CdS, ZnSe, and other AIIBVI nanocrystals are reviewed. One‐pot versus multistage core synthesis approaches are discussed. The noninjection one‐pot method ensures slow, controllable growth of core nanocrystals starting from magic‐size seed recrystallization, which yields defect‐free cores with strictly specified sizes and shapes and a high monodispersity. Subsequent injection of shell precursors allows the formation of gradient core–shell QDs with a smooth potential barrier for electrons and holes, without strains or interfacial defects, and, as a consequence, a luminescence quantum yield (QY) approaching 100 %. These general approaches can also be applied to semiconductor core–shell QDs other than AIIBVI ones to cover the broad spectral range from the near‐UV to IR regions of the optical spectrum, thus displacing fluorescent organic dyes from their application areas.  相似文献   

3.
A simple and general method for the large‐scale production of yolk–shell powders with various compositions by a spray‐drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk–shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk–shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large‐scale spray‐drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk–shell powders were studied as the first target material in the spray‐drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single‐shelled SnO2 yolk–shell powders with the configuration SnO2@void@SnO2. The SnO2 yolk–shell powders prepared by the simple spray‐drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk–shell powders at a current density of 2000 mA g?1 were 645 and 570 mA h g?1 for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %.  相似文献   

4.
We have reported for the first time the preparation of yolk–shell‐structured Li4Ti5O12 powders for use as anode materials in lithium‐ion batteries. One Li4Ti5O12 yolk–shell‐particle powder is directly formed from each droplet containing lithium, titanium, and carbon components inside the hot wall reactor maintained at 900 °C. The precursor Li4Ti5O12 yolk–shell‐particle powders, which are directly prepared by spray pyrolysis, have initial discharge and charge capacities of 155 and 122 mA h g?1, respectively, at a current density of 175 mA g?1. Post‐treatment of the yolk–shell‐particle powders at temperatures of 700 and 800 °C improves the initial discharge and charge capacities. The initial discharge capacities of the Li4Ti5O12 powders with a yolk–shell structure and a dense structure post‐treated at 800 °C are 189 and 168 mA h g?1, respectively. After 100 cycles, the corresponding capacities are 172 and 152 mA h g?1, respectively (retentions of 91 and 90 %).  相似文献   

5.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

6.
In connection with the synthesis directed toward 25-hydroxycholesterol,1/ and other cholestane derivatives hydroxylated in the side chain, the research was undertaken in order to find the most effective method for the preparation of pregn-17/20/-en-21-oic acid derivatives.2/ In the present communication we would like to report the observation that contrary to the literature data, such pregnenoic acid derivatives can be conveniently obtained in very good yields by the Wittig-Horner reaction of 17-ketoandrostane derivatives and estrone with trialkyl phosphonoacetates when alcohols or DME are used as the reaction medium. In the previous reports the following statements have been made: 1/ the Wittig-Horner reaction of steroidal 17-ketones with trialkyl phosphonoacetates is compleetely inhibited as a result of the steric shielding of the carbonyl group3a, 2/ this reaction gives very low yields3b/, 3/ in the case of 17-ketoanderostane derivatives this reaction requires drastic conditions and is completely inhibited in the case of estrone/irrespective of conditions/3c/.  相似文献   

7.
The thermal gas‐phase reactions of the closed‐shell metal‐oxide cluster [Al2TaO5]+ with methane have been explored by using FT‐ICR mass spectrometry complemented by high‐level quantum chemical calculations. Mechanistic aspects have been addressed to reveal the origins of the efficient addition process which results in activating the C?H bond of methane. The [Al2TaO5]+/CH4 couple has been compared with several other systems reported previously, and the electronic origins of their rather distinct performances are discussed.  相似文献   

8.
In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems.  相似文献   

9.
In this work we analyze the exchange-correlation potentialv xc within the Kohn-Sham approach to density functional theory for the case of atomic systems. The exchange-correlation potential is written as the sum of two potentials. One of these potentialsv xc,scr is the long-range. Coulombic potential of the coupling constant integrated exchange-correlation hole which represents the screening of the two-particle interactions due to exchange-correlation effects. The other potentialv xc,scr resp contains the functional derivative with respect to the electron density of the coupling constant integrated pair-correlation function representing the sensitivity of this exchange-correlation screening to density variations. As explicit expression of the exchange-part of this functional derivative is derived using an approximation for the Greens function of the Kohn-Sham system and is shown to display a distinct atomic shell structure. The corresponding potentialv xc,scr resp has a clear step structure and is constant within the atomic shells and changes rapidly at the atomic shell boundaries. Numerical examples are presented for the Be and Kr atoms using the Optimized Potential Model (OPM).  相似文献   

10.
Mesoporous materials have attracted considerable attention for use as a catalyst or a catalyst support due to their remarkable textural properties such as high surface area and large pore volume with a narrow pore size distribution. Many efforts have been made to design mesoporous materials for use in heterogeneous catalyst systems. Recent progress and results regarding the preparation of nickel-mesoporous materials and their application to the hydrodechlorination of chlorinated organic compounds were discussed in this review. Mesoporous materials were used as a support for nickel catalyst or a nickel-incorporated mesoporous catalytic material in this work. Two research areas were described and discussed in this review. One is the preparation of mesoporous alumina-supported nickel catalysts and their application to the hydrodechlorination of 1,2-dichloropropane and o-dichlorobenzene. The other is the preparation of mesoporous silica-supported nickel catalysts and their application to the hydrodechlorination of 1,1,2-trichloroethane and chlorobenzene.  相似文献   

11.
A series of core–shell‐structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM‐5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant‐directed sol–gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15–100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso‐/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4–3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short‐time kinetic diffusion efficiency of benzene molecules within pristine ZSM‐5 (≈7.88×10?19 m2 s?1) is almost retainable after covering with 75 nm‐thick mesoporous silica shells (≈7.25×10?19 m2 s?1), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core–shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol g?1) for large molecules such as 1,3,5‐triisopropylbenzene relative to that of pristine ZSM‐5 (≈0.4 mmol g?1) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core–shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n‐dodecane shows the superiority of the unique core–shell structure over pristine ZSM‐5. Insight into the core–shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes.  相似文献   

12.
Peripherally substituted phthalocyanine (Pc) systems render more accessible the desirable properties of the Pc system, i.e., high thermal and oxidative stability as well as significant complexity ability of transition metals. After brief examination of existing synthetic methods, two new routes to substitution of the peripheral protons of the Pc system are described: (1) directed metalation of the Pc system itself followed by derivatization, and (2) directed metalation of phthalonitrile followed by derivatization and Pc formation. Each of these methods is further distinguished by providing exclusively substitution at the a-positions of the Pc nucleus. Several of the compounds have been isolated and characterized using the techniques of HPLC; 1H, 13C, and 29Si NMR; and mass spectroscopy. These multisubstituted Pc systems are much more soluble in organic solvents than is the parent system. Such soluble macromolecules are of interest to the energy research community because of a variety of possible applications, notably the preparation of sensors, electrode coatings, catalysts, and soluble oxygen transports.  相似文献   

13.
The need for accurate (< 0.06%) isotopic blends of 6Liand 7Li is explained and their preparation is discussed. It is shown that lithium must be determined at an accuracy level better than 0.035%. Four methods — acid-base titration with hydrochloric acid or benzoic acid, and weighing as sulphate or carbonate — were tested and improved for the precise and accurate analysis of lithium hydroxide solutions. The results of these four methods for a 0.1 M solution agreed within ± 0.02%. The preparation of pure isotopically enriched lithium hydroxide solutions, with specially purified cation- and anion-exchangers, is described. The prepared products contain as little as 100 μg of other alkali metals and 50 μg of alkaline-earth metals per gram of lithium, and are sufficiently free of anions to permit accurate chemical assay of lithium. No changes in the isotopic compositions of 99% 6Li or 99.99% 7Li were detected during the treatment.  相似文献   

14.
A rapid and convenient method for the determination of furfural is presented that is based upon sequential perturbation of the Mn(II)-catalyzed B-Z oscillating system with different amounts of furfural using a continuous-flow stirred tank reactor (CSTR). When the sample was injected, the change in the amplitude and/or period was linearly proportional to the logarithm of the concentration of furfural over the range 3×10−8∼1×10−5 mol L−1. This method gave a detection limit of 3×10−9 mol L−1 under optimum conditions. Finally, the possible mechanism of furfural perturbation in the oscillating reaction is discussed. When the furfural was injected into the Mn(II)-catalyzed B-Z oscillating system, the change in the amplitude and/or period was linearly proportional to the logarithm of the concentration of furfural over the range 3×10−8~1×10−5 mol L−1, with a detection limit of 3×10−9 mol L−1 under optimum conditions.   相似文献   

15.
A new methodological approach for the determination of Ag+ by the perturbations caused by different amounts of Ag+ on a novel Belousov-Zhabotinskii oscillating system is proposed. Such a novel oscillating system involves the participation of an unsaturated macrocyclic Cu(II) complex, [CuL](ClO4)2, as catalyst and malic acid as substrate. The ligand L in the complex is 5,7,7,12,14,14-hexemethyl-1,4,8,11-tetraazacy-clotetradeca-4,11-diene. The linear relationship between the change in the oscillating period of the chemical system and the logarithm of [Ag+] is found in the range 6.25 × 10−5 to 1.00 × 10−7 M. The obtained RSD is 0.8%. The probable mechanism involving the perturbation of Ag+ is also discussed. The text was submitted by the authors in English.  相似文献   

16.
Transition metal selenides attract significant attention as advanced anode materials for sodium-ion batteries(SIBs) in recent years due to their appropriate working potential and high theoretic capacity. However, the poor structural stability and rate capability limit their further practical applications. Herein,zeolite imidazole framework-8/zeolite imidazole framework-67 is used as a template to prepare Co0.85Se and Zn Se nanoparticles embed in N-doped carbon matrix successfully, and...  相似文献   

17.
It has been found that the two-phase reactions of aqueous HCl,HOAc or H3PO4 with primary amine N1923 in chloroform are osiclating reactions.Their power-time curves were measured by the titration microcalorimetric method,and the induction period(tin).The first oscillating period(tp.1) and the second oscillating period (tp.2) were determined.The apparent activating parameters and the orders of the oscillating systems were calculated and the following relationships were established:for the oscillating system of hydrochloric acid.  相似文献   

18.
The synthesis and characterization of the novel 4,7-bis(dialkylamino)tricyclo[5.2.1.04,10]deca-1(10), 2,5,8-tetraenes 12 from 1,4,7-trihalotriquinacenes 8 and secondary amines is reported. The structural and electronic characteristics of these as well as the acepentalene dianion ( 32? ) and some related systems as determined by semiempirical (MNDO) calculations are discussed. Thereby, 32? should be a triply etheno-bridged trimethylenemethane dianion exhibiting Y-delocalization favored over the formation of a peripheral 10π-electronic system. Attempts directed towards the generation of 32? by reacting tetraenes 12 with Na led to the formation of tris(dialkylamino)triquinacenes 9 , presumably by a kind of reduction/disproportionation mechanism.  相似文献   

19.
The preparation of novel one‐dimensional core–shell Fe/Fe2O3 nanowires as anodes for high‐performance lithium‐ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core–shell Fe/Fe2O3 nanowire maintains an excellent reversible capacity of over 767 mA h g?1 at 500 mA g?1 after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g?1, a stable capacity as high as 538 mA h g?1 could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large‐scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high‐performance LIBs.  相似文献   

20.
A sensitive and convenient method for the determination of trace europium ions using an oscillating chemical reaction involving Ce(IV) - KBrO3 - acetone - oxalic acid - H2SO4 was proposed. The results indicated that the changes in oscillating period (T) was linearly proportional to the negative logarithmic concentration of Eu3+ (-log C) in the range of 1.41 × 10−8 ˜ 1.41 × 10−4 mol L−1 (r = 0.9982) with a detection limit of 1.04 × 10−9 mol L−1. The recoveries were limited to the range of 99.5% to 100.8%. Under the same conditions, other rare earth ions did not interfere with the determination of Eu3+. In addition, a perturbation mechanism was also discussed briefly.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号