首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppose L is a second-order elliptic differential operator in ℝd and D is a bounded, smooth domain in ℝd. Let 1 < α ≤ 2 and let Γ be a closed subset of ∂D. It is known [13] that the following three properties are equivalent: (α) Γ is ∂-polar; that is, Γ is not hit by the range of the corresponding (L, α)-superdiffusion in D; (β) the Poisson capacity of Γ is equal to 0; that is, the integral is equal to 0 or ∞ for every measure ν, where ρ(x) is the distance to the boundary and k(x, y) is the corresponding Poisson kernel; and (γ) Γ is a removable boundary singularity for the equation Lu = uα in D; that is, if u ≥ 0 and Lu = uα in D and if u = 0 on ∂D \ Γ, then u = 0. We investigate a similar problem for a parabolic operator in a smooth cylinder 𝒬 = ℝ+ × D. Let Γ be a compact set on the lateral boundary of 𝒬. We show that the following three properties are equivalent: (a) Γ is 𝒢-polar; that is, Γ is not hit by the graph of the corresponding (L, α)-superdiffusion in 𝒬; (b) the Poisson capacity of Γ is equal to 0; that is, the integral is equal to 0 or ∞ for every measure ν, where k(r, x; t, y) is the corresponding (parabolic) Poisson kernel; and (c) Γ is a removable lateral singularity for the equation + Lu = uα in 𝒬; that is, if u ≥ 0 and + Lu = uα in 𝒬 and if u = 0 on ∂𝒬 \ Γ and on {∞} × D, then u = 0. © 1998 John Wiley & Sons, Inc.  相似文献   

2.
Mahdi Boukrouche  Ionel Ciuperca 《PAMM》2007,7(1):4080023-4080024
Let (m, n) ∈ ℕ2, Ω an open bounded domain in ℝm , Y = [0, 1]m ; uε in (L2(Ω))n which is two-scale converges to some u in (L2(Ω × Y))n . Let φ: Ω × ℝm × ℝn → ℝ such that: φ(x, ·, ·) is continuous a.e. x ∈ Ω φ(·, y, z) is measurable for all (y, z) in ℝm × ℝn , φ(x, ·, z) is 1-periodic in y, φ(x, y, ·) is convex in z. Assume that there exist a constant C1 > 0 and a function C2L2(Ω) such that

  相似文献   


3.
Let U = ℂ2, Γ = ℤ2, and let ℂ[x 1±1, x 2±1] be the ring of Laurent polynomials. The Witt algebra L is the Lie algebra of derivations over ℂ[x 1±1, x 2±1], which is spanned by elements of the form D(u, r) = x r (u 1 d 1 + u 2 d 2), u = (u 1, u 2) ∈ U, r ∈ Γ, where d 1 and d 2 are the degree derivations of ℂ[x 1±1, x 2±1]. The image of gl 2-module V under Larsson functor F α , denoted by W = F α (V), gives a class of L-modules, often called the Larsson-modules of L. In this paper, we study the derivations from the Witt algebra L to its Larsson-modules W, and we determine the first cohomology group H 1(L,W).  相似文献   

4.
We improve some previous existence and nonexistence results for positive principal eigenvalues of the problem —Δpu = λg(xp(u), x ∈ ℝN, limx‖⇒+∞u(x) = 0. Also we discuss existence, nonexistence and antimaximum principle questions concerning the perturbed problem —Δpu = λg(xp(u) + f(x), x∈ ℝN.  相似文献   

5.
We study the one-dimensional symmetry of solutions to the nonlinear Stokes equation which are periodic in the d − 1 last variables (living on the torus 𝕋d−1) and globally minimize the corresponding energy in Ω = ℝ × 𝕋d−1, i.e., Namely, we find a class of nonlinear potentials W ≥ 0 such that any global minimizer u of E connecting two zeros of W as x1 → ± ∞ is one-dimensional; i.e., u depends only on the x1 -variable. In particular, this class includes in dimension d = 2 the nonlinearities with w being a harmonic function or a solution to the wave equation, while in dimension d ≥ 3 , this class contains a perturbation of the Ginzburg-Landau potential as well as potentials W having d + 1 wells with prescribed transition cost between the wells. For that, we develop a theory of calibrations relying on the notion of entropy (coming from scalar conservation laws). We also study the problem of the existence of global minimizers of E for general potentials W providing in particular compactness results for uniformly finite energy maps u in Ω connecting two wells of W as x1 → ± ∞ . © 2019 Wiley Periodicals, Inc.  相似文献   

6.
《Applied Mathematics Letters》2004,17(10):1147-1152
The aim of this note is to generalize a result of Barron [1] concerning the approximation of functions, which can be expressed in terms of the Fourier transform, by superpositions of a fixed sigmoidal function. In particular, we consider functions of the type h(x) = ∫ℝd ƒ (〈t, x〉)dμ(t), where μ is a finite Radon measure on ℝd and ƒ : ℝ → ℂ is a continuous function with bounded variation in ℝ We show (Theorem 2.6) that these functions can be approximated in L2-norm by elements of the set Gn = {Σi=0staggeredn cig(〈ai, x〉 + bi) : aid, bi, ciℝ}, where g is a fixed sigmoidal function, with the error estimated by C/n1/2, where C is a positive constant depending only on f. The same result holds true (Theorem 2.9) for f : ℝ → ℂ satisfying the Lipschitz condition under an additional assumption that ∫ℝd6t6ed|u(t)| > ∞  相似文献   

7.
Let W ì \Bbb Rn\Omega \subset {\Bbb R}^n be a smooth domain and let u ? C0(W).u \in C^0(\Omega ). A classical result of potential theory states that¶¶-òSr([`(x)]) u(x)ds(x)=u([`(x)])-\kern-5mm\int\limits _{S_{r}(\bar x)} u(x)d\sigma (x)=u(\bar x)¶¶for every [`(x)] ? W\bar x\in \Omega and r > 0r>0 if and only if¶¶Du=0 in W.\Delta u=0 \hbox { in } \Omega.¶¶Here -òSr([`(x)]) u(x)ds(x)-\kern-5mm\int\limits _{S_{r}(\bar x)} u(x)d\sigma (x) denotes the average of u on the sphere Sr([`(x)])S_r(\bar x) of center [`(x)]\bar x and radius r. Our main result, which is a "localized" version of the above result, states:¶¶Theorem. Let u ? W2,1(W)u\in W^{2,1}(\Omega ) and let x ? Wx\in \Omega be a Lebesgue point of Du\Delta u such that¶¶-òSr([`(x)]) u d s- a = o(r2)-\kern-5mm\int\limits _{S_{r}(\bar x)} u d \sigma - \alpha =o(r^2)¶¶for some a ? \Bbb R\alpha \in \Bbb R and all sufficiently small r > 0.r>0. Then¶¶Du(x)=0.\Delta u(x)=0.  相似文献   

8.
We consider two quasi-linear initial-value Cauchy problems on ? d : a parabolic system and an hyperbolic one. They both have a first order non-linearity of the form φ(t, x, u)·?u, a forcing term h(t, x, u) and an initial condition u 0 ∈ L (? d ) ∩ C (? d ), where φ (resp. h) is smooth and locally (resp. globally) Lipschitz in u uniformly in (t, x). We prove the existence of a unique global strong solution for the parabolic system. We show the existence of a unique local strong solution for the hyperbolic one and we give a lower bound regarding its blow up time. In both cases, we do not use weak solution theory but a direct construction based on parabolic schemes studied via a stochastic approach and a regularity result for sequences of parabolic operators. The result on the hyperbolic problem is performed by means of a non-classical vanishing viscosity method.  相似文献   

9.
We study convergence properties of {υ(∇u k )}k∈ℕ if υ ∈ C(ℝ m×m ), |υ(s)| ⩽ C(1+|s| p ), 1 < p < + ∞, has a finite quasiconvex envelope, u k u weakly in W 1,p (Ω; ℝ m ) and for some g ∈ C(Ω) it holds that ∫Ω g(x)υ(∇u k (x))dx → ∫Ω g(x)Qυ(∇u(x))dx as k → ∞. In particular, we give necessary and sufficient conditions for L 1-weak convergence of {det ∇u k } k∈ℕ to det ∇u if m = n = p. Dedicated to Jiří V. Outrata on the occasion of his 60th birthday This work was supported by the grants IAA 1075402 (GA AV ČR) and VZ6840770021 (MŠMT ČR).  相似文献   

10.
11.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

12.
 Let G be a 2-connected graph with maximum degree Δ (G)≥d, and let x and y be distinct vertices of G. Let W be a subset of V(G)−{x, y} with cardinality at most d−1. Suppose that max{d G(u), d G(v)}≥d for every pair of vertices u and v in V(G)−({x, y}∪W) with d G(u,v)=2. Then x and y are connected by a path of length at least d−|W|. Received: February 5, 1998 Revised: April 13, 1998  相似文献   

13.
We study the global existence, asymptotic behaviour, and global non‐existence (blow‐up) of solutions for the damped non‐linear wave equation of Kirchhoff type in the whole space: utt+ut=(a+b∥∇u2γu+∣uαu in ℝN×ℝ+ for a, b⩾0, a+b>0, γ⩾1, and α>0, with initial data u(x, 0)=u0(x) and ut(x, 0)=u1(x). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
It is well known that a graph G of order p ≥ 3 is Hamilton-connected if d(u) + d(v) ≥ p + 1 for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs G of order at least 3 for which d(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| + 1 for any path uwv with uvE(G), where N(x) denote the neighborhood of a vertex x. We prove that a graph G satisfying this condition has the following properties: (a) For each pair of nonadjacent vertices x, y of G and for each integer k, d(x, y) ≤ k ≤ |V(G)| − 1, there is an xy path of length k. (b) For each edge xy of G and for each integer k (excepting maybe one k η {3,4}) there is a cycle of length k containing xy. Consequently G is panconnected (and also edge pancyclic) if and only if each edge of G belongs to a triangle and a quadrangle. Our results imply some results of Williamson, Faudree, and Schelp. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Basudeb Dhara 《代数通讯》2013,41(6):2159-2167
Let R be a prime ring of char R ≠ 2, d a nonzero derivation of R, U a noncentral Lie ideal of R, and a ∈ R. If au n 1 d(u) n 2 u n 3 d(u) n 4 u n 5 d(u) n k?1 u n k  = 0 for all u ∈ U, where n 1, n 2,…,n k are fixed non-negative integers not all zero, then a = 0 and if a(u s d(u)u t ) n  ∈ Z(R) for all u ∈ U, where s ≥ 0, t ≥ 0, n ≥ 1 are some fixed integers, then either a = 0 or R satisfies S 4, the standard identity in four variables.  相似文献   

16.
Let t = (t1,…,tn) be a point of ?n. We shall write . We put, by the definition, Wα(u, m) = (m?2u)(α ? n)/4(n ? 2)/22(α + n ? 2)/2Г(α/2)]J(α ? n)/2(m2u)1/2; here α is a complex parameter, m a real nonnegative number, and n the dimension of the space. Wα(u, m), which is an ordinary function if Re α ≥ n, is an entire distributional function of α. First we evaluate {□ + m2}Wα + 2(u, m) = Wα(u, m), where {□ + m2} is the ultrahyperbolic operator. Then we express Wα(u, m) as a linear combination of Rα(u) of differntial orders; Rα(u) is Marcel Riesz's ultrahyperbolic kernel. We also obtain the following results: W?2k(u, m) = {□ + m2}kδ, k = 0, 1,…; W0(u, m) = δ; and {□ + m2}kW2k(u, m) = δ. Finally we prove that Wα(u, m = 0) = Rα(u). Several of these results, in the particular case µ = 1, were proved earlier by a completely different method.  相似文献   

17.
Given a graph G = (V, E), a set W í V{W \subseteq V} is said to be a resolving set if for each pair of distinct vertices u, v ? V{u, v \in V} there is a vertex x in W such that d(u, x) 1 d(v, x){d(u, x) \neq d(v, x)} . The resolving number of G is the minimum cardinality of all resolving sets. In this paper, conditions are imposed on resolving sets and certain conditional resolving parameters are studied for honeycomb and hexagonal networks.  相似文献   

18.
The Dirichlet problem for elliptic systems of the second order with constant real and complex coefficients in the half-space  k + = {x = (x 1,…,xk ): xk > 0} is considered. It is assumed that the boundary values of a solution u = (u 1,…,u m) have the form ψ 1 ξ 1 + · · · + ψ n ξ n, 1 ≤ nm, where ξ 1,· · ·,ξ n is an orthogonal system of m-component normed vectors and ψ 1,· · ·,ψ n are continuous and bounded functions on ? k +. We study the mappings [C(? k +)] n ? (ψ 1,…,ψ n) → u(x) ?  m and [C(? k +)] n ? (ψ 1,…,ψ n) → u(x) ?  m generated by real and complex vector valued double layer potentials. We obtain representations for the sharp constants in inequalities between |u(x)| or |(z, u(x))| and ∥u| xk =0∥, where z is a fixed unit m-component vector, | · | is the length of a vector in a finite-dimensional unitary space or in Euclidean space, and (·,·) is the inner product in the same space. Explicit representations of these sharp constants for the Stokes and Lamé systems are given. We show, in particular, that if the velocity vector (the elastic displacement vector) is parallel to a constant vector at the boundary of a half-space and if the modulus of the boundary data does not exceed 1, then the velocity vector (the elastic displacement vector) is majorised by 1 at an arbitrary point of the half-space. An analogous classical maximum modulus principle is obtained for two components of the stress tensor of the planar deformed state as well as for the gradient of a biharmonic function in a half-plane.  相似文献   

19.
This article presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x,t)) in the quasi‐linear parabolic equation ut(x,t)=(k(u(x,t))ux(x,t))x, with Dirichlet boundary conditions u(0,t)=ψ0, u(1,t)=ψ1. The main purpose of this paper is to investigate the distinguishability of the input–output mappings Φ[?]:?? →C1[0,T], Ψ[?]:??→C1[0,T] via semigroup theory. In this paper, it is shown that if the null space of the semigroup T(t) consists of only zero function, then the input–output mappings Φ[?] and Ψ[?] have the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of these mappings. Moreover, under the light of measured output data (boundary observations) f(t):=k(u(0,t))ux(0,t) or/and h(t):=k(u(1,t))ux(1,t), the values k0) and k1) of the unknown diffusion coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, can be determined explicitly. In addition to these, the values ku0) and ku1) of the unknown coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, are also determined via the input data. Furthermore, it is shown that measured output data f(t) and h(t) can be determined analytically by an integral representation. Hence the input–output mappings Φ[?]:??→ C1[0,T], Ψ[?]:??→C1[0,T] are given explicitly in terms of the semigroup. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
It is proved that there is a (weak) solution of the equation ut=a*uxx+b*g(ux)x+f, on ℝ+ (where * denotes convolution over (−∞, t)) such that ux is locally bounded. Emphasis is put on having the assumptions on the initial conditions as weak as possible. The kernels a and b are completely monotone and if a(t)=t−α, b(t)=t−β, and g(ξ)∼sign(ξ)∣ξ∣γ for large ξ, then the main assumption is that α>(2γ+2)/(3γ+1)β+(2γ−2)/(3γ+1). © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号