首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small-angle neutron scattering is utilized to determine the flow induced alignment of a model thermotropic liquid crystalline polymer (LCP) as a function of shear rate and temperature. The results demonstrate that the flow-induced structures in thermotropic liquid crystalline polymers have similarities and differences to those in lyotropic liquid crystalline polymer solutions. The shear rate dependence of the alignment shows that the flow-induced alignment correlates very well to the viscosity behavior of the LCP in the shear thinning regime, while temperature variation results in a change in the extent of alignment within the nematic phase. Relaxation results also demonstrate that the flow-induced alignment remains essentially unchanged for up to an hour after the shear field has been removed. Last, there exists a regime at low shear rate and low temperature where alignment of the LCP molecule perpendicular to the applied shear flow is stable. These results provide important experimental evidence of the molecular level changes that occur in a thermotropic liquid crystalline polymer during flow, which can be utilized to develop theoretical models and more efficiently process thermotropic polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 3017–3023, 1998  相似文献   

2.
Intermittent shear flow including start-up flow and small oscillatory amplitude time sweep or stress relaxation after cessation of shear flow was used to study the rheological behavior and internal structure of thermotropic liquid crystalline polymer (TLCP). There are two kinds of intermittent shear flow: all start-up flows are in the same direction (intermittent flow forward: IFF) and start-up flows change their directions alternately (intermittent flow reversal: IFR). The results show that the stress of start-up flow of IFF and IFR in the test process is not superposed, indicating different changes of internal structure of thermotropic LCP (TLCP). Two main factors affect structure changes in the experimental time scale. One relates to long-term texture relaxation process, the other is an interchain reaction that becomes important after 30 min. The two factors raise the stress of IFF, but express complex effects for the stress of IFR. The latter factor becomes very important at long time annealing process. The relaxation behavior was also studied by the application of wide range relaxation spectrum calculated from the combined dynamic modulus, which gave three characteristic relaxation times (0.3, 10 and 600 s) ascribable to the relaxations of less-phase orientation, domain orientation, and domain deformation, respectively. The result also shows that the domain coalescence (texture relaxation), a long relaxation time, is a much slow process and lasts beyond 2400 s of the test time.  相似文献   

3.
Summary: The influence of a lateral force (or lateral shear) acting on chains in a polymer brush is investigated theoretically. Brushes consisting of chains with temperature dependent anisotropic interactions between monomers (main‐chain mesogenic groups) are considered. It is shown that a lateral force applied to polymer brush induces its compression. In contrast to a conventional brush, the compression of brush, capable of forming a liquid crystalline (LC) state, can be caused by comparatively small shear forces. Moreover, such shear forces can induce a phase transition of a brush into the tilted LC state with a several‐fold decrease in brush thickness. These results allow us to predict a possibility to observe a decrease in brush thickness in a real experiment with reasonably values of shear rate.

Model of a chain in a polymer brush under an influence of lateral force p.  相似文献   


4.
Summary: The behavior of an anisotropic polymer brush under a lateral shear flow is considered in the framework of a hybrid method combining a self‐consistent field approach and Brownian dynamics simulation. It is shown that such a flow can induce the compression of an anisotropic brush at shear rates much smaller than those which induce the compression of a conventional isotropic brush. Moreover, a lateral flow can initiate a thermotropic collapse which occurs as an LC phase transition. This collapse takes place at higher temperatures than in the absence of the flow. This can help to find brush compression experimentally. The variation of the internal structure of a brush (density, order parameter, and director orientation profiles, distribution of terminal groups) is also investigated. An anomalous effect of brush densification and ordering near the outer surface is observed. At large shear rates the distribution of chains over their deformation has a bimodal character: one fraction of chains is strongly stretched and another fraction remains unperturbed by the flow. Average characteristics of a brush were compared with predictions of the lattice theory for the box model where the lateral force is applied to chain ends. Satisfactory agreement was observed.

Polymer brush under an influence of lateral flow.  相似文献   


5.
We synthesize polybase brushes and investigate their swelling behavior. Poly(2-(dimethylamino)ethyl methacrylate)) (PDMAEMA) brushes are prepared by the "grafting from" method using surface-initiated Atom Transfer Radical Polymerization to obtain dense brushes with relatively monodisperse chains (PDI = 1.35). In situ quaternization reaction can be performed to obtain poly(2-(trimethylamino)ethyl methacrylate)) (PTMAEMA) brushes. We determine the swollen thickness of the brushes using ellipsometry and neutron reflectivity techniques. Brushes are submitted to different solvent conditions to be investigated as neutral brushes and weak and strong polyelectrolyte brushes. The swelling of the brushes is systematically compared to scaling models. It should be pointed out that the scaling analysis of different types of brushes (neutral polymer and weak and strong polyelectrolyte brushes) is performed with identical samples. The scaling behavior of the PDMAEMA brush in methanol and the PTMAEMA brush in water is in good agreement with the predicted scaling laws for a neutral polymer brush in a good solvent and a polyelectrolyte brush in the osmotic regime. The salt-induced contraction of the quaternized brush is observed for high salt concentration, in agreement with the predicted transition between the regimes of the osmotic brush and the salted brush. From the crossover concentration, we calculate the effective charge ratio of the brush following the Manning counterion condensation. We also use PDMAEMA brushes as pH-responsive polybase brushes. The swelling behavior of the polybase brush is intermediate with respect to the behavior of the neutral polymer brush in a good solvent and the behavior of the quenched polyelectrolyte brush, as expected. The effective charge ratio of the PDMAEMA brush is determined as a function of pH using the scaling law of the polyelectrolyte brush in the osmotic regime.  相似文献   

6.
The phenomenon of band texture formation of sheared main chain liquid crystalline polymers is reviewed. The bands seen in a polarizing microscope are optical effects. The macromolecular chains are aggregated into zig-zag bent fibrils perpendicular to the bands. The band texture is formed during shear relaxation. The induction period depends on the shear rate applied, the shearing time, solution concentration (lyotropic), solution layer thickness, temperature and the nature of the polymer. There exists a critical shear deformation to bring a multi-domain nematic or cholesteric phase into a monodomain continuous phase, from which the band texture is formed. These two phases show quite different rheological behavior. In certain cases randomly oriented regions of bands can also be formed during quenching of a thermotropic nematic polymer melt or during standing of a lyotropic nematic polymer solution, where the nematic domains in the melt or in the solution have grown to a sufficient size.  相似文献   

7.
A collapse of polymeric brushes in a solvent can be induced by a change in external conditions, for example, solvent quality or its temperature. The systems with following specific interactions are considered in this paper, namely, polyelectrolyte brushes, amphiphilic brushes in a mixture of incompatible solvents, and brushes with possibility of liquid-crystalline ordering of polymer segments. For all the systems it is shown that the brush collapse can be observed under certain conditions, and it occurs through a microphase segregation. There are two microphases of different densities that coexist in the brush. The effect is caused by general properties of the swollen phase of polymeric brush and hence appears at all types of the interactions that can induce a phase transition of the brush into collapsed state.  相似文献   

8.
Recent developments of polymer liquid crystals (PLCs) are reviewed. The virial expansion method of Onsager and the lattice model used by Flory to appreciate the most relevant parameters in establishing mesomorphic behavior in polymeric systems are presented. These and other theoretical predictions are confirmed by numerous experiments. Both lyotropic (polymer solutions) and thermotropic (polymer melts) types of PLCs are considered with emphasis placed on the latter. The general properties of mesophases formed by such polymers are surveyed and some chemical structures capable of producing mesophases are classified in relation to their ability to form lyotropic and thermotropic systems. The synthetic routes, the effects of polymer structure on physical properties, and applications of two major classes of lyotropic systems (polypeptides, polyamides) and of a range of potentially important thermotropic polymers are discussed.  相似文献   

9.
Liquid crystalline ordering in planar polymer brushes is investigated theoretically by numerical calculations within a self-consistent field approximation. The brushes are formed by macromolecules with mesogenic groups in main chain and immersed in a solvent. Existence of a microphase segregated brush (MSB) regime with a collapsed orientationally ordered intrinsic sublayer and a swollen external sublayer is shown. At small grafting density, the transition from a conventional brush state to the microphase segregated state is a jump-wise first order phase transition for a finite chain length (N). The magnitudes of the jumps in the average characteristics of the brush tend to zero in the limit N → ∞ since this transition occurs only in a vanishingly small part (∝ N−1/2) of the brush. High compressibility of MSB brush is demonstrated. The origin of phase transition in planar brushes is discussed.  相似文献   

10.
Binary polymer brushes, including mixed homopolymer brushes and diblock copolymer brushes, are an attractive class of environmentally responsive nanostructured materials. Owing to microphase separation of the two chemically distinct components in the brush, multifaceted nanomaterials with functionalized and patterned surfaces can be obtained. This review summarizes recent progress on the theory and simulations related to binary polymer brushes grafted to flat, spherical, and cylindrical substrates, with a focus on patterned morphologies of multifaceted hairy nanoparticles, an intriguing class of hybrid nanostructured particles (e.g., nanospheres and nanorods). In particular, powerful field theory and particle-based simulations suitable for revealing novel structures on these patterned surfaces, including self-consistent field theory and dissipative particle dynamics simulations, are emphasized. The unsolved yet critical issues in this research field, such as dynamic response of binary polymer brushes to environmental stimuli and the hierarchical self-assembly of binary hairy nanoparticles, are briefly discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1583–1599  相似文献   

11.
12.
The ordering in polymer brushes formed by macromolecules with mesogenic groups in the main chain is investigated. The numerical method of self-consistent field approximation was used. The existence of two different liquid crystalline nematic states is shown: homeotropic (HLC) and planar (PLC) states. The free energy of the HLC state is always less than that of the PLC state. However, with the increase of energy of anisotropic interactions, (with decrease in temperature) our numerical procedure leads us to either one or another state depending on the grafting density. The results obtained show that both brush surfaces, play an essential role in establishing the concrete LC state structure. The grafting surface and the external surface force the planar order.  相似文献   

13.
The relaxation of liquid‐crystalline polymer (LCP) fibers in the polycarbonate (PC)/LCP blend was examined under various conditions on a hot‐stage microscope. LC5000 is a thermotropic LCP consisting of 80/20 hydroxybenzoic acid and poly(terephthalate). The geometry of the fibers is not an important factor in the relaxation process. Fibers of different aspect ratios and lengths relaxed at the same rate and exhibited identical onset times. Increasing the temperature caused the fibers to relax faster, especially near the nematic‐transition temperature. The fibers relaxed almost immediately when subjected to a temperature of 285 °C. At 280 °C the fibers were stable for 43 min, whereas at 270 °C no noticeable relaxation was evident. Addition of compatibilizer stabilized the fibers by enhancing the interfacial adhesion between the fibers and the PC matrix. Consequently, LCP fibers in the compatibilized system relaxed at a much higher temperature (294 °C) as compared with the uncompatibilized system (275–280 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2307–2312, 2003  相似文献   

14.
We present results of computer simulations of polymer brushes (layers of polymer chains attached at one end onto an impermeable planar surface) under shear deformation at constant shear rate. As the first stage of calculations the behavior of a single brush was studied. The monomer density profile, the distribution of the chain ends, the positions and orientations of different monomers along the chain were calculated. Dimensions of the polymer chains as functions of the shear rate were obtained for different grafting densities. An increase in the brush thickness over the grafting plane with an increase in the shear rate as predicted by the theory of Barrat was observed. However, the magnitude of the effect appears to be small. We explain this by finite extensibility of the grafted chains.  相似文献   

15.
We present the synthesis of reactive polymer brushes prepared by surface reversible addition–fragmentation chain transfer polymerization of pentafluorophenyl acrylate. The reactive ester moieties can be used to functionalize the polymer brush film with virtually any functionality by simple post‐polymerization modification with amines. Dithiobenzoic acid benzyl‐(4‐ethyltrimethoxylsilyl) ester was used as the surface chain transfer agent (S‐CTA) and the anchoring group onto the silicon substrates. Reactive polymer brushes with adjustable molecular weight, high grafting density, and conformal coverage through the grafting‐from approach were obtained. Subsequently, the reactive polymer brushes were converted with amino‐spiropyrans resulting in reversible light‐responsive polymer brush films. The wetting behavior could be altered by irradiation with ultraviolet (UV) or visible light. Furthermore, a patterned surface of polymer brushes was obtained using a lithography technique. UV irradiation of the S‐CTA‐modified substrates leads to a selective degradation of S‐CTA in the exposed areas and gives patterned activated polymer brushes after a subsequent RAFT polymerization step. Conversion of the patterned polymer brushes with 5‐((2‐aminoethyl)amino)naphthalene‐1‐sulfonic acid resulted in patterned fluorescent polymer brush films. The utilization of reactive polymer brushes offers an easy approach in the fabrication of highly functional brushes, even for functionalities whose introduction is limited by other strategies. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
More than 2 decades of active investigations in the field of polymer brushes have revealed continuous and growing interest in different aspects of synthesis, properties, and applications of tethered polymers. In this article, we report on our recent advances in brush synthesis. The method we explore is based on the combination of “grafting through” approach with the functional anchoring polymer layer technique. We introduce the photoinitiated “version” of synthesis of polyacrylamide brushes. Both homogeneous depositions and laterally resolved gradient and patterned samples have been prepared by this technique. The results for flat polymer brushes, that is, thickness, stability, and contact angles, are complimented by kinetic parameters as deducted from analysis of gradient samples obtained by the method of a sliding mask. A microscopic shadow mask is used to fabricate patterned brushes. The microscopically patterned brushes demonstrate high lateral resolution limited by optical phenomena. Finally, we have performed a viability assaying of neuronal cell on both flat and patterned brushes. Sufficient restraint of cell adhesion on polyacrylamide photobrushes and very low cytotoxicity of the brush components (polymer brush itself, anchoring layer) make photografting a promising platform to control cell deposition and surface localization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1616–1622, 2010  相似文献   

17.
A novel amphotropic polymer which could exhibit liquid-crystalline behavior both in the solvent and in the heating process was synthesized through azo polymers grafting from cellulose nanocrystals (CNCs). The CNCs, prepared by acid hydrolysis of filter paper, were characterized by Atomic Force Microscopy (AFM). Poly{6-[4-(4-methoxyphenylazo)phenoxy] hexyl methacrylate}(PMMAZO), which was a liquid-crystalline polymers (LCP), was successfully to graft from CNC via Atom transfer radical polymerization (ATRP). The structure and thermal properties of the PMMAZO-grafted CNC were investigated using Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analyses (TGA). Its phase structures and transitions were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The experimental results showed that the PMMAZO-grafted CNC exhibited both types of liquid crystal formation, thermotropic and lyotropic.  相似文献   

18.
Polycarbonate (PC) was melt blended with small amount of liquid‐crystalline polymer (LCP) and various contents of glass beads (GB) having different diameters. The rheological measurements indicated that the GB addition increased the viscosity ratio and seemed unfavorable to the LCP fibrillation. However, the morphological observation showed that the LCP fibrillation was promoted by the GB addition and varied with the GB packing. With the increased GB packing by increasing the GB content and/or decreasing the GB diameter, LCP deformed from spheres and ellipsoids into stretched ellipsoids at lower shear rates and into long fibrils at higher shear rates. Although higher content of smaller GB jammed into the larger LCP droplets and inhibited the LCP fibrillation, very long LCP fibrils formed at higher shear rates at a high enough packing of GB. The relationship between GB packing and LCP fibrillation revealed two kinds of hydrodynamic effects of GB promoting the LCP fibrillation: at lower GB packing, the shear flow was enhanced by the high local shear between GB, in quantity; and for a high enough GB packing, the shear flow was changed, in quality, into elongational flow, which was more effective for the LCP fibrillation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1020–1030, 2006  相似文献   

19.
Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.  相似文献   

20.
含热致液晶性共聚酯的聚砜共混物   总被引:1,自引:1,他引:1  
将一种含萘环的热致液晶性共聚酯与聚砜树脂熔融共混并挤塑成条。毛细管流变性测试表明,这一共聚酯降低了共混物的表观粘度,甚至低于其本身的粘度。共混物受剪切作用形成了各向异性的微纤增强结构,并具有皮芯结构,在液晶聚俣物含量低到2%与0.5%的样条中仍有共聚酯微纤形成。共聚酯微纤提高了聚砜的力学性能,含20%共聚酯共混物挤塑条的位伸模量为聚砜树脂的二倍半。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号