首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of polymerosomes from double-emulsions   总被引:1,自引:0,他引:1  
Diblock copolymers are known to spontaneously organize into polymer vesicles. Typically, this is achieved through the techniques of film rehydration or electroformation. We present a new method for generating polymer vesicles from double emulsions. We generate precision water-in-oil-in-water double emulsions from the breakup of concentric fluid streams; the hydrophobic fluid is a volatile mixture of organic solvent that contains dissolved diblock copolymers. We collect the double emulsions and slowly evaporate the organic solvent, which ultimately directs the self-assembly of the dissolved diblock copolymers into vesicular structures. Independent control over all three fluid streams enables precision assembly of polymer vesicles and provides for highly efficient encapsulation of active ingredients within the polymerosomes. We also use double emulsions with several internal drops to form new polymerosome structures.  相似文献   

2.
利用耗散粒子动力学模拟方法, 研究了杂臂星型嵌段共聚物Am(Bn)2在溶液中自组装形成囊泡的行为. 主要分析了自组装过程、亲水分枝和疏水分枝的长度及分子构型对组装结构的影响. 结果表明, 杂臂星型聚合物在溶液中会自组装形成碟状胶束, 之后弯曲闭合形成囊泡. 当亲水部分的分枝较短时, 易于形成囊泡结构; 在可形成囊泡结构的条件下, 双分子层囊泡膜的厚度随分枝长度的增加而增加. 与构成相近的线型嵌段共聚物相比, 杂臂星型嵌段共聚物更易形成囊泡结构, 且形成的囊泡结构较薄.  相似文献   

3.
采用Monte Carlo模拟方法研究了具有相同链长和组分比的不同嵌段序列的AB两嵌段共聚物与ABA三嵌段共聚物在选择性溶剂中形成囊泡的动力学过程. 模拟结果表明, AB两嵌段共聚物囊泡的形成与ABA三嵌段共聚物囊泡的形成的动力学过程不同. 在慢速退火条件下, ABA三嵌段共聚物囊泡是通过亲水链段向胶束的表面和中心扩散而形成的, 而AB两嵌段共聚物囊泡则由片层弯曲闭合而形成. 相对而言, 退火速度对AB两嵌段共聚物囊泡形成的动力学过程没有显著影响, 其改变仅影响亲水链段与疏水链段发生相分离的难易程度. 当退火速度较快时, 亲水链段和疏水链段发生相分离的速度较快且相分离发生在囊泡形成之前; 而当退火速度较慢时亲水链段和疏水链段之间的相分离在囊泡形成之后仍在进行.  相似文献   

4.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micellar structures from hamburger, to segmented wormlike, to toroidal segmented micelles, and finally to vesicles with simultaneously increasing hydrophobic lengths of blocks B and C. When the length of hydrophobic blocks B and C is asymmetric, specific bead-on-string worm micelles are found. Particularly, when the star ABC triblock copolymer is in a strong segregation regime and both B and C blocks are strongly hydrophobic, quite long segmented wormlike micelles are obtained, which had not been found in previously investigated diblock and linear ABC triblock copolymers solution. Additionally, raspberry micelles with beads dispersed on the core also occur in the strong segregation regime of bulk star ABC triblock copolymers. Furthermore, the aggregate morphology of ABC star triblock copolymers is strongly influenced by the addition of linear AB diblock copolymers. The most significant feature is that the long segmented worms will become shorter, to form hamburger micelles with the addition of AB diblock copolymers. These simulations are in good agreement with the experimental findings by Lodge's group.  相似文献   

5.
The bending rigidity k(c) of bilayer vesicles self-assembled from amphiphilic diblock copolymers has been measured using single- and dual-micropipet techniques. These copolymers are nearly a factor of 5 greater in hydrophobic membrane thickness d than their lipid counterparts and an order of magnitude larger in molecular weight M(n). The macromolecular structure of these amphiphiles lends insight into and extends relationships for traditional surfactant behavior. We find the scaling of k(c) with thickness to be nearly quadratic, in good agreement with existing theories for bilayer membranes. The results here are key to understanding and designing soft interfaces such as biomembrane mimetics.  相似文献   

6.
We introduce an approach for forming bilayer polymer membranes by adhesion of amphiphile-laden interfaces. This adhesion is induced by a reduction of solvent quality for the amphiphilic diblock copolymers through selective evaporation of good solvent in the solvent mixture. By combining this membrane formation mechanism with a double-emulsion-templated approach for vesicle formation, we fabricate monodisperse polymersomes that exhibit excellent membrane uniformity, and structural stability, using a method that has high encapsulation efficiency. Moreover, we also show that the technique is versatile and can be applied to different block copolymers. The ability to direct the assembly of amphiphiles into a membrane creates new opportunities to engineer the structures of vesicles on the level of the individual bilayer leaflets.  相似文献   

7.
We describe a versatile technique for fabricating monodisperse polymersomes with biocompatible and biodegradable diblock copolymers for efficient encapsulation of actives. We use double emulsion as a template for the assembly of amphiphilic diblock copolymers into vesicle structures. These polymersomes can be used to encapsulate small hydrophilic solutes. When triggered by an osmotic shock, the polymersomes break and release the solutes, providing a simple and effective release mechanism. The technique can also be applied to diblock copolymers with different hydrophilic-to-hydrophobic block ratios, or mixtures of diblock copolymers and hydrophobic homopolymers. The ability to make polymer vesicles with copolymers of different block ratios and to incorporate different homopolymers into the polymersomes will allow the tuning of polymersome properties for specific technological applications.  相似文献   

8.
The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.  相似文献   

9.
Amphiphilic di- and triblock copolymers having different hydrophilic-to-hydrophobic block length ratio were synthesized using ATRP. The self-assembly behavior of these AB and ABA block copolymers consisting of poly(n-butyl methacrylate) (B) and poly(2,2-(dimethylaminoethyl methacrylate) (A) was investigated using a combination of dynamic light scattering, negative-stain transmission electron microscopy, cryoelectron microscopy, and atomic force microscopy. Two populations of self-organized structures in aqueous solution, micelles and compound micelles, were detected for diblock copolymers. Triblock copolymers assembled into vesicular structures of uniform sizes. Furthermore it was found that these vesicles tended to compensate the high curvature by additional organization of the polymer chains outside of the membrane. The chain hydrophilicity of the polymers appeared to have a critical impact on the self-assembly response toward temperature change. The self-reorganization of the polymers at different temperatures is discussed.  相似文献   

10.
PDMS-b-PEO两亲性嵌段共聚物的合成及溶液性质   总被引:2,自引:0,他引:2  
通过正丁基锂(n-BuLi)引发的六甲基环三硅氧烷(D3)阴离子开环聚合以及单硅氢封端聚二甲基硅氧烷(PDMS)与烯丙基聚氧乙烯醚(PEO)的硅氢加成反应, 合成得到了一系列分子量分布窄的PDMS-b-PEO两亲性嵌段共聚物. 利用凝胶渗透色谱(GPC)、傅里叶变换红外(FTIR)光谱、氢核磁共振谱(1H-NMR)表征了嵌段共聚物的结构组成. 通过表面张力仪测定得到了不同结构嵌段共聚物的平衡表面张力及临界胶束浓度(cmc). 结果显示, 该系列嵌段共聚物的cmc值不仅受到憎水性嵌段的影响, 同时也受嵌段共聚物的体积效应以及嵌段共聚物的几何形状(即嵌段共聚物各嵌段的比例)的影响, PDMS-b-PEO两嵌段共聚物的cmc值表现出了随憎水嵌段增加而相应增加的趋势. 通过透射电子显微镜(TEM)表征发现, PDMS-b-PEO嵌段共聚物在选择性溶剂水中会自组装形成球状、棒状以及囊泡状的聚集体.  相似文献   

11.
Self‐assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self‐assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500 nm) and microsized (>5 μm) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics.  相似文献   

12.
Amphiphilic block copolyethers assemble into membranes with thickness between 2.4 and 7.5 nm. The vesicular morphology has been confirmed by small-angle X-ray scattering combined with electron microscopy for diblock copolymers and triblock copolymers of both architectures. The scaling of the membrane thicknesses with the length of the hydrophobic block is in good agreement with the strong segregation theory for block copolymer melts, indicating a mixed and stretched conformation of the hydrophobic chain inside the vesicle membrane. This result is in contrast to previously published results where the hydrophobic membranes were observed to have bilayer geometry and polymer chains that are relatively unperturbed from their ideal Gaussian dimensions.  相似文献   

13.
The synthesis and self-assembly behavior of biohybrid ABC triblock copolymers consisting of a synthetic diblock, polystyrene-b-polyethylene glycol (PSm-b-PEG113), where m is varied, and a hemeprotein, myoglobin (Mb) or horse radish peroxidase (HRP), is described. The synthetic diblock copolymer is first functionalized with the heme cofactor and subsequently reconstituted with the apoprotein or the apoenzyme to yield the protein-containing ABC triblock copolymer. The obtained amphiphilic block copolymers self-assemble in aqueous solution into a large variety of aggregate structures. Depending on the protein and the polystyrene block length, micellar rods, vesicles, toroids, figure eight structures, octopus structures, and spheres with a lamellar surface are formed.  相似文献   

14.
Vesicle response to osmotic shock provides insight into membrane permeability, a highly relevant value for applications ranging from nanoreactor experimentation to drug delivery. The osmotic shock approach has been employed extensively to elucidate the properties of phospholipid vesicles (liposomes) and of varieties of polymer vesicles (polymersomes). This study seeks to compare the membrane response for two varieties of polymersomes, a comb-type siloxane surfactant, poly(dimethylsiloxane)-g-poly(ethylene oxide) (PDMS-g-PEO), and a diblock copolymer, polybutadiene-b-poly(ethylene oxide) (PBut-b-PEO). Despite similar molecular weights and the same hydrophilic block (PEO), the two copolymers possess different hydrophobic blocks (PBut and PDMS) and corresponding glass transition temperatures (-31 and -123 °C, respectively). Dramatic variations in membrane response are observed during exposure to osmotic pressure differences, and values for polymer membrane permeability to water are extracted. We propose an explanation for the observed phenomena based on the respective properties of the PBut-b-PEO and PDMS-g-PEO membranes in terms of cohesion, thickness, and fluidity.  相似文献   

15.
We report the synthesis of pH- and enzyme-responsive amphiphilic diblock copolymers through reversible addition-fragmentation chain transfer polymerization of a lysine-derived methacrylate monomer comprising p-nitrobenzyl carbamate (pNBC) functionality using a poly(ethylene glycol)-modified macro-chain transfer agent. Depending on the hydrophobic block length, the diblock copolymers self-assemble to form spherical micelles, wormlike micelles, and bilayered vesicles in the aqueous solution. The responsive behaviors of the polymeric vesicles to pH, enzyme, and light are investigated in detail. As the pH lowers to pH 5.0, the polymeric vesicles undergo a morphological transition from vesicles to spherical micelles. In the presence of nitroreductase and a cofactor NADH, the decomposition of pNBC releases the ε-NH2 of the lysine moiety and hence induces the generation of the vesicles with crosslinked membranes at pH 7.4. Moreover, owing to the degradation of pNBC moiety under UV irradiation, the polymeric vesicles also demonstrate a photo-responsive feature. As the irradiation time prolongs, it is observed a light-triggered morphological transition from vesicles to wormlike micelles with network-like structures.  相似文献   

16.
Microstructures assembled by amphiphilic graft copolymers in a selective solvent (poor for the backbone chain and good for graft chains or poor for graft chains and good for the backbone chain) were investigated on the basis of a real-space algorithm of self-consistent field theory in two-dimensions. Circle-like micelles, line-like micelles, large compound micelles, and vesicles are obtained by tailoring the architectural parameters and interaction parameter between the graft blocks and solvents. The aggregate morphology stability regions of graft copolymers as functions of the position of first graft point and the number of branches are constructed. It is found that the architectural parameters play a remarkable role in the complex microstructure formation. The interaction between the graft blocks and solvents is also shown to exert an effect on the morphology stability regions. The distributions of the free end and inner blocks of the backbone are found to be different in various aggregate structures. For the circle-like micelles assembled by graft copolymers with a hydrophobic backbone and vesicles assembled by graft copolymers with a hydrophilic backbone, the free end and inner blocks segregate and localize in different parts of the aggregates depending on their length. However, with respect to the large compound micelles and vesicles assembled by graft copolymers with a hydrophobic backbone, the free end and inner blocks uniformly mix in the clusters.  相似文献   

17.
Micellar structures of amphiphilic poly(1,2‐butadiene)‐block‐poly(ethylene oxide) diblock copolymers have been crosslinked in aqueous solution by γ‐irradiation. By transmission electron microscopy (TEM) of negatively stained specimens it is shown that the predominant structures present are copolymer vesicles (which appear to be double‐layered). These fixed vesicles are stable with respect to their shape and can be transferred from water into a good solvent for both blocks, such as tetrahydrofuran, thus demonstrating the effectiveness of the crosslinking. In addition to the vesicles, a small number of flexible cylindrical/filamentous structures, sequentially fused vesicles/strings of vesicles and giant sheet‐like vesicles are also visible after cross‐linking. The vesicle chains seem to be formed by fusion of the double‐layered vesicles; the outer layer of the vesicles apparently fuses sequentially, whereas the inner shell remains intact, creating periodic linear thickenings.  相似文献   

18.
Diblock copolymers, in which both blocks are composed of aliphatic polyesters, were synthesized from two different alkyne‐functionalized δ‐valerolactone monomers by ring opening polymerization and subsequent click cycloaddition. Trimethylsilyl protection of the alkyne functionality of one block was instrumental to the success of the synthesis. These novel aliphatic polyester diblock copolymers were characterized by 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), and infrared (IR) spectroscopy. Sequential functionalization of the diblock copolymers with hydrophobic groups on one block, and hydrophilic groups on the other block, provides access to amphiphilic structures. Micellar structures generated from these polyester amphiphiles were characterized by fluorescence spectroscopy and transition electron microscopy (TEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

19.
Coarse-grained molecular dynamics simulations are used to investigate physical deposition behavior of charged amphiphlic diblock copolymers. The effects of solvent selectivity, charge distribution in amphiphlic diblock copolymers, and electric field strength on deposition conformations are studied qualitatively. Flat amphiphilic bilayers, which consist of hydrophilic monolayer and hydrophobic brush, are formed by physical deposition of charged amphiphlic diblock copolymers in nonselective solvents. For physically deposited amphiphlic diblock copolymers in selective solvents, amphiphilic bilayers consist of disc-shaped hydrophilic monolayers and hydrophobic nanospheres are found. This study sheds light on the formation of various amphiphlic diblock copolymer deposition conformations in different solvents and interaction mechanism of different components. Furthermore, the evolution of physical deposition process of charged amphiphlic diblock copolymers layer offers new insight to the controlling of amphiphilic bilayer thickness, hydrophobic nanosphere size, and interface property of depositional amphiphlic diblock copolymers.  相似文献   

20.
利用光气法,以三光气和苯丙氨酸为原料,合成了苯丙氨酸酸酐(b-Phe-NCA).用端氨基聚乙二醇单甲醚(MPEG-NH2)作大分子引发剂,引发b-Phe-NCA开环聚合,合成了不同分子量的聚乙二醇单甲醚-聚(L-苯丙氨酸)(MPEG44-b-Phe)AB型二嵌段共聚多肽.利用IR1、H-NMR、GPC对共聚物结构进行了表征.利用TEM研究了二嵌段共聚多肽MPEG44-b-Phe50及MPEG44-b-Phe7在水溶液中的自组装形态,结果表明合成出的两亲性二嵌段共聚物在水溶液中自组装形成胶束,随着嵌段共聚物中亲水嵌段含量的增高,共聚物溶水性增强,其在水溶液中的自组装形态更加均一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号