首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic protein-2 (BMP-2) is used to promote bone regeneration. However, the bone regeneration ability of BMP-2 relies heavily on the delivery vehicle. Previously, we have developed heparin- conjugated fibrin (HCF), a vehicle for long-term delivery of BMP-2 and demonstrated that long-term delivery of BMP-2 enhanced its osteogenic efficacy as compared to short-term delivery at an equivalent dose. The aim of this study was to compare the bone-forming ability of the BMP-2 delivered by HCF to that delivered by clinically utilized BMP-2 delivery vehicle collagen sponge. An in vitro release profile of BMP-2 showed that HCF released 80% of the loaded BMP-2 within 20 days, whereas collagen sponge released the same amount within the first 6 days. Moreover, the BMP-2 released from the HCF showed significantly higher alkaline phosphatase activity than the BMP-2 released from collagen sponge at 2 weeks in vitro. Various doses of BMP-2 were delivered with HCF or collagen sponge to mouse calvarial defects. Eight weeks after the treatment, bone regeneration was evaluated by computed tomography, histology, and histomorphometric analysis. The dose of BMP-2 delivered by HCF to achieve 100% bone formation in the defects was less than half of the BMP-2 dose delivered by collagen sponge to achieve a similar level of bone formation. Additionally, bone regenerated by the HCF-BMP-2 had higher bone density than bone regenerated by the collagen sponge-BMP-2. These data demonstrate that HCF as a BMP-2 delivery vehicle exerts better osteogenic ability of BMP-2 than collagen sponge, a clinically utilized delivery vehicle.  相似文献   

2.
《Comptes Rendus Chimie》2017,20(4):440-445
Bone grafts are used in a wide array of clinical settings to augment bone repair and regeneration. This article reports a new method for the elaboration of a hybrid biomaterial in the form of sponge based on collagen gel, CaCO3 from recycled Rapana thomasiana seashell, and Na2HPO4·2H2O. Practically, collagen acts as a matrix through which calcium and phosphate ions are diffusing during in situ hydroxyapatite synthesis. The organic–inorganic interactions among biomaterial components have been studied by infrared spectroscopy, and the surface morphology was investigated by scanning electron microscopy technique. Moreover, the developed biomaterials were studied for in vitro biocompatibility with MG63 human osteoblasts. The results obtained demonstrated that the developed hybrid material does not exhibit a significant cytotoxicity and supports cell proliferation. Consequently, it holds great promise for applications in bone tissue engineering.  相似文献   

3.
Naturally occurring nanoorganized biomaterials of marine origin provide an abundant source of novel bone and cartilage replacement materials, and enable the development of novel biomimetic composites. The design of novel biomaterial relies on an understanding of the organic matrices and templating structures. The aim of the present study was to investigate the composition and the properties of skeletal structures of marine sponge (Verongula gigantea) and octocorals (Isidella sp.) in particular by using instrumental analytical (i.e. electron transmission and scanning microscopic methods, vibrational spectroscopies) methods. Modern gentle demineralization techniques were used. It was shown, that the demosponge V. gigantea has much potential as a biomaterial due to the multilayered structure of its rigid fibrous skeletons. The results of FTIR and Raman spectroscopy unambiguously showed that all specimens of the investigated sponge have α-chitin as the main skeletal component. Nano-crystalline aragonite was isolated and identified in V. gigantea, a sponge usually described as lacking a mineral skeleton. Bamboo corals of the Isididae family were additionally investigated. An inorganic component within the deep-sea octocoral Isidella sp. could be clearly identified as calcite by using Raman spectroscopy. The organic part was identified as a nanoorganized fibrillar proteinaceous matrix with acidic properties.  相似文献   

4.
高长有 《高分子科学》2011,29(2):233-240
The poly(lactide-co-glycolide)(PLGA) sponge fabricated by a gelatin porogen leaching method was filled with fibrin gel to obtain a hybrid scaffold for chondrocytes culture in vitro.The fibrin gel evenly distributed in the hybrid scaffold with visible fibrinogen fibers after drying.In vitro culture it was found that in the hybrid scaffold the chondrocytes distributed more evenly and kept a round morphology as that in the normal cartilage.Although the chondrocytes seeded in the control PLGA sponges showed similar proliferation behavior with that in the hybrid scaffolds,they were remarkably elongated,forming a fibroblast-like morphology.Moreover,a larger amount of glycosaminoglycans was secreted in the hybrid scaffolds than that in the PLGA sponges after in vitro culture of chondrocytes for 4 weeks.The results suggest that the fibrin/PLGA hybrid scaffold may be favorably applied for cartilage tissue engineering.  相似文献   

5.
Three pyrrololactam alkaloids have been isolated from the marine sponge Phacellia fusca Schmidt collected from the South China Sea, and their structures were determined as 1–3 , on the grounds of spectral data. This is the first report of these compounds from this sponge. The structure of 1 was confirmed by X-ray analysis.  相似文献   

6.
Assessment of subtle changes in proteoglycan (PG) and collagen, the primary macromolecular components of cartilage, which is critical for diagnosis of the early stages of osteoarthritis (OA), has so far remained a challenge. In this study we induced osteoarthritic cartilage changes in a rabbit model by ligament transection and medial meniscectomy and monitored disease progression by infrared fiber optic probe (IFOP) spectroscopy, Fourier transform infrared imaging spectroscopy (FT-IRIS), and magnetic resonance imaging (MRI) microscopy. IFOP studies combined with chemometric partial least-squares analysis enabled us to monitor progressive cartilage surface changes from two to twelve weeks post-surgery. FT-IRIS studies of histological sections of femoral condyle cartilage revealed that compared with control cartilage the OA cartilage had significantly reduced PG content 2 and 4 weeks post-surgery, collagen fibril orientation changes 2 and 4 weeks post-surgery, and changes in collagen integrity 2 and 10 weeks post-surgery, but no significant changes in collagen content at any time. MR microscopy studies revealed reduced fixed charge density (FCD), indicative of reduced PG content, in the OA cartilage, compared with controls, 4 weeks post-surgery. A non-significant trend toward higher apparent MT exchange rate, km, was also found in the OA cartilage at this time point, suggesting changes in collagen structural features. These two MR findings for FCD and km parallel the FT-IRIS findings of reduced PG content and altered collagen integrity, respectively. MR microscopy studies of the cartilage at the 12-week time point also found a trend toward longer T 2 values and reduced anisotropy in the deep zone of the OA cartilage, consistent with increased hydration and less ordered collagen. These studies reveal that FT-IRIS and MR microscopy provide complementary data on compositional changes in articular cartilage in the early stages of osteoarthritic degradation.  相似文献   

7.
The sea squirt has a tunic composed of cellulose fibers that are originated from animal cells and form a cellulose membrane that functions as a protective barrier and a skeleton of body. We purified the squirt cellulose membrane (SCM), about 100 μm thickness, from the cystic tunic of Styela clava. The SCM was turned out to be composed of pure native cellulose I in the analyses of X-ray diffraction, attenuated total reflectance Fourier transform-infrared spectroscopy. The inner surface of SCM showed numerous micropores in the meshworks of thin cellulose microfibrils, while the outer surface of SCM showed a few micropores. In order to know the osteoconductive effect of the SCM, it was applied to the perforated rat frontal bone, 8 mm diameter, for 4, 6, 8, 10, 12, and 16 weeks. The mesenchymal cells were tightly adhered to the inner surface of SCM and produced new bone there. The perforations to which the SCM was applied, were completely healed in 10 weeks, while the positive control group applied with the guided tissue regeneration (GTR) material, Bio-Gide® showed incomplete healing until 16 weeks. Immunohistochemistry performed on the experimental group showed that BMP-2 and osteonectin were strongly positive in the early stage of bone healing at 4 weeks, while receptor activator of nuclear factor kappa B ligand (RANKL) became positive at 16 weeks. Particularly, the inner surface of SCM itself was consistently positive for the osteogenic proteins, indicating that the implanted SCM can absorb the osteogenic proteins from the stromal matrix of the host tissue. On the other hands, the positive control group implanted with Bio-Gide® showed relatively weak reaction of the osteogenic proteins in the perforated bone area during the healing period, and the negative control group implanted none showed poor bony regeneration in the perforated wounds. Taken together, the SCM showed an excellent osteoconductive effect in the perforated rat frontal bone, which was quite comparable to the results of Bio-Gide® implantation. Therefore, it is suggested that the SCM be a novel GTR material of a natural source with a strong osteoconductive effect on the injured bone.  相似文献   

8.
Emphasizing the role of hydrogel stiffness and cellular differentiation, this study develops collagen and elastin‐like polypeptide (ELP)–based bone regenerative hydrogels loaded with recombinant human bone morphogenetic protein‐2 (rhBMP‐2) and doxycycline with mechanical properties suitable for osteogenesis. The drug‐incorporated collagen–ELP hydrogels has significantly higher modulus of 35 ± 5 kPa compared to collagen‐only hydrogels. Doxycycline shows a bi‐phasic release with an initial burst release followed by a gradual release, while rhBMP‐2 exhibits a nearly linear release profile for all hydrogels. The released doxycycline shows anti‐microbial activity against Pseudomonas aeruginosa, Streptococcus sanguinis, and Escherichia coli. Microscopic observation of the hydrogels reveals their interconnected, macroporous, 3D open architecture with pore diameters between 160 and 400 µm. This architecture supports human adipose–derived stem cell attachment and proliferation from initial days of cell seeding, forming a thick cellular sheath by day 21. Interestingly, in collagen and collagen–ELP hydrogels, cell morphology is elongated with stretched slender lamellipodial formation, while cells assemble as spheroidal aggregates in crosslinked as well as drug‐loaded hydrogels. Osteogenic markers, alkaline phosphatase and osteocalcin, are expressed maximally for drug‐loaded hydrogels compared to those without drugs. The drug‐loaded collagen–ELP hydrogels are thus promising for combating bacterial infection and promoting guided bone regeneration.  相似文献   

9.
Dysidin, a novel chlorine containing natural product from the sponge Dysidea herbacea Dysidin ( 1 ) has been isolated from the marine sponge Dysidea herbacea. It structure has been determined by degradation studies and spectroscopic methods. The synthesis of a degradation product is described. The relative and absolute configuration is established by X-ray diffraction methods.  相似文献   

10.
We have developed a novel method to induce spontaneous hyaline cartilage regeneration in vivo for a large osteochondral defect by implanting a plug made from a double‐network hydrogel composed of poly(2‐acrylamido‐2‐methylpropanesulfonic acid) and poly(N,N′‐dimethylacrylamide) at the bottom of the defect, leaving the cavity vacant. In cells regenerated in the treated defect, type‐2 collagen, Aggrican, and SOX9 mRNAs were highly expressed and the regenerated matrix was rich in proteoglycan and type‐2 collagen at 4 weeks. This fact gave a significant modification to the commonly established concept that hyaline cartilage tissue cannot regenerate in vivo. This study prompted an innovative strategy in the field of joint surgery to repair an osteochondral defect using an advanced, high‐function hydrogel.

  相似文献   


11.
We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (δ13C) of individual amino acids in hair proteins and bone collagen using the LC‐IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound‐specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context by the δ13C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used as a proxy for bone collagen at the amino acid level, this validates compound‐specific isotope studies using hair as a model for palaeodietary reconstruction. Our results suggest that a small offset observed in the bulk δ13C values of the hair and bone samples may be attributed to two factors: (i) amino acid compositional differences between hair and bone proteins, and (ii) differential turnover rates of the tissues and the amino acid pools contributing to their synthesis. This application proposes that hair may be a useful complementary or alternative source of compound‐specific paleodietary information. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The treatment of bone and cartilage defects with bioengineered constructs of artificial scaffolds and autogenous cells became the main challenge of contemporary regenerative medicine. Early defect repair may prevent secondary injury. Recent studies could prove that bone and cartilage cells are sensitive to microscale and nanoscale patterns of surface topography and chemical structure. Nanostructured materials provide an environment for tissue regeneration mimicking the physiological range of extracellular matrix. The article reviews several studies substantiating the superiority of nanostructured materials for bone and cartilage repair along with own results on cell attachment.  相似文献   

13.
Sponges, Neofibularia nolitangere, can regenerate spontaneously after being broken down into small pieces, and the regenerated structure maintains the original appearance and function. Synthetic materials with such capabilities are highly desired but hardly achieved. Presented here is a sponge‐inspired self‐regenerative powder from a double‐network (DN) tough hydrogel. Hydrogels are regenerated from their powder form, by addition of water, with preservation of the original appearance and mechanical properties. The powder‐hydrogel‐powder cycle can be repeated multiple times with little loss in mechanical properties, analogous to the regeneration of sponges. These DN hydrogels can be conveniently stored and easily shaped upon regeneration. This work may have implications in the development of regenerative materials for coatings and adhesives.  相似文献   

14.
Recently tissue repairing bone grafted materials have been greater properties than the recapitulating intramembranous regeneration of natural bone especially cartilage damage regeneration. In this present work was designed and developed for the enhancement of chondrocyte generation for cartilage repair. Boswellic acid (BA) is a traditional compound used for the treatment of osteoarthritis. Boswellic acid subjected to involve the preparation of hydroxyapatite (HAP) and HAP-BA compounds were functionalized with carboxymethyl cellulose (CMC) to promote the extra-cellular matrix. HAP, HAP-BA and HAP-BA-CMC composites were characterized via their physicochemical properties through FTIR, XRD, SEM and TEM techniques. The antibacterial activity and chondrocyte cell variability were tested. At 14 days, HAP-BA-CMC composite was observed 67% of cell viability. The chondrocyte cell adhesion on the HAP-BA-CMC composite was investigated and it observed polygonal filopodia. From the results suggest that HAP-BA-CMC composite can improve the chondrocyte production for repair of damaged cartilage.  相似文献   

15.
This work reported a novel composite fiber membrane containing poly(1actic‐co‐glycolic acid)/six‐armed poly(ε‐caprolactone)/hydroxylapatite‐grafted poly(l ‐lactide)/Pluronic F‐108 (PLGA/SAPCL/HA‐g‐PLLA/PF‐108) produced by electrospinning. SAPCL, HA‐g‐PLLA, and PF‐108 could be well blended with PLGA to make fibers. Fibrous surface and diameter had little difference in morphology with the change of fibrous component. Compared with simple PLGA, PLGA/SAPCL, or PLGA/SAPCL/HA‐g‐PLLA fiber membrane, the quaternary composites not only showed the improved mechanics stability but also possessed better hydrophilicity. The quaternary membrane was conductive to accelerate degradation and maintained nice bioactivity. It was not cytotoxicity. These results suggest that the composite fiber membrane may be qualified as guided bone regeneration substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
组织工程相关壳聚糖-明胶基生物材料   总被引:12,自引:5,他引:12  
组织工程相关壳聚糖-明胶基生物材料;表面修饰剂;综述  相似文献   

17.
The aim is to evaluate the effects of photobiomodulation therapy (PBMT) on the guided bone regeneration process (GBR) in defects in the calvaria of rats filled with biphasic calcium phosphate associated with fibrin biopolymer. Thirty male Wistar rats were randomly separated: BMG (n = 10), defects filled with biomaterial and covered by membrane; BFMG (n = 10), biomaterial and fibrin biopolymer covered by membrane; and BFMLG (n = 10), biomaterial and fibrin biopolymer covered by membrane and biostimulated with PBMT. The animals were euthanized at 14 and 42 days postoperatively. Microtomographically, in 42 days, there was more evident bone growth in the BFMLG, limited to the margins of the defect with permanence of the particles. Histomorphologically, an inflammatory infiltrate was observed, which regressed with the formation of mineralized bone tissue. In the quantification of bone tissue, all groups had a progressive increase in new bone tissue with a significant difference in which the BFMLG showed greater bone formation in both periods (10.12 ± 0.67 and 13.85 ± 0.54), followed by BFMG (7.35 ± 0.66 and 9.41 ± 0.84) and BMG (4.51 ± 0.44 and 7.11 ± 0.44). Picrosirius-red staining showed greater birefringence of collagen fibers in yellow-green color in the BFMLG, showing more advanced bone maturation. PBMT showed positive effects capable of improving and accelerating the guided bone regeneration process when associated with biphasic calcium phosphate and fibrin biopolymer.  相似文献   

18.
As compounds from a calcareous sponge, Leucetta sp., of the Coral Sea, we isolated a series of novel naamidine-type alkaloids, 6 – 10 , which are oxidized at a single benzylic position. We also report on the first marine, mixed-ligand metal complex 5 and on the first natural metal complexes 3 and 4 derived from classical naamidines, i.e., 1 and 2 . The latter are also present in free form in the sponge.  相似文献   

19.
In the course of our continuing efforts to allocate bioactive secondary metabolites from Red Sea marine invertebrates, we have investigated the sponge Callyspongia species. The cytotoxic dichloromethane fraction of the methanolic extract of the sponge afforded a new cytotoxic peptide named callyptide A (1). Its structure was determined by extensive 1D and 2D NMR (COSY, HSQC and HMBC) studies and high-resolution mass spectral determination. The configuration of the amino acids was determined by Marfey’s analysis. Callyptide A was found to exhibit growth inhibitory activity when tested against different cancer cell lines.  相似文献   

20.
Elatenyne is a marine natural product that was isolated in 1986. Despite its simple 2,2′‐bifuranyl backbone, its relative structure was only recently determined. The absolute configuration of elatenyne has still not been unequivocally confirmed because of its pseudo‐meso core structure, which results in a specific rotation, [α]D , of almost zero. In this work, the structure of natural elatenyne was determined by the crystalline sponge method and the use of a porous coordination network (a crystalline sponge) capable of absorbing organic guests; in the sponge, the absorbed guests are ordered and crystallographically observable. The crystalline sponge could differentiate between the two very similar alkyl side chains, and the absolute structure of elatenyne was thus reliably determined. The total amount required for the experiments was only approximately 100 μg, and the majority (95 μg) could be recovered after the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号