首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of polynomial least squares fitting in which the usual monomial basis is replaced by the Bernstein basis is considered. The coefficient matrix of the overdetermined system to be solved in the least squares sense is then a rectangular Bernstein-Vandermonde matrix. In order to use the method based on the QR decomposition of A, the first stage consists of computing the bidiagonal decomposition of the coefficient matrix A. Starting from that bidiagonal decomposition, an algorithm for obtaining the QR decomposition of A is the applied. Finally, a triangular system is solved by using the bidiagonal decomposition of the R-factor of A. Some numerical experiments showing the behavior of this approach are included.  相似文献   

2.
A generalization of the Vandermonde matrices which arise when the power basis is replaced by the Said-Ball basis is considered. When the nodes are inside the interval (0,1), then those matrices are strictly totally positive. An algorithm for computing the bidiagonal decomposition of those Said-Ball-Vandermonde matrices is presented, which allows us to use known algorithms for totally positive matrices represented by their bidiagonal decomposition. The algorithm is shown to be fast and to guarantee high relative accuracy. Some numerical experiments which illustrate the good behaviour of the algorithm are included.  相似文献   

3.
We prove that an oscillatory matrix is similar to a bidiagonal nonnegative matrix by means of a totally positive matrix of change of basis. New characterizations of oscillatory and nonsingular totally positive matrices in terms of similarity are provided.  相似文献   

4.
In this article, it is proved that Gram matrices of totally positive bases of the space of polynomials of a given degree on a compact interval are totally positive. Conditions to guarantee computations to high relative accuracy with those matrices are also obtained. Furthermore, a fast and accurate algorithm to compute the bidiagonal factorization of Gram matrices of the Said-Ball bases is obtained and used to compute to high relative accuracy their singular values and inverses, as well as the solution of some linear systems associated with these matrices. Numerical examples are included.  相似文献   

5.
Schoenmakers–Coffey matrices are correlation matrices with important financial applications. Several characterizations of positive extended Schoenmakers–Coffey matrices are presented. This paper provides an accurate and fast method to obtain the bidiagonal decomposition of the conversion of these matrices, which in turn can be used to compute with high relative accuracy the eigenvalues and inverses of positive extended Schoenmakers–Coffey matrices. Numerical examples are included.  相似文献   

6.
7.
A class of sign‐symmetric P‐matrices including all nonsingular totally positive matrices and their inverses as well as tridiagonal nonsingular H‐matrices is presented and analyzed. These matrices present a bidiagonal decomposition that can be used to obtain algorithms to compute with high relative accuracy their singular values, eigenvalues, inverses, or their LDU factorization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Hermitian and unitary matrices are two representatives of the class of normal matrices whose full eigenvalue decomposition can be stably computed in quadratic computing complexity once the matrix has been reduced, for instance, to tridiagonal or Hessenberg form. Recently, fast and reliable eigensolvers dealing with low‐rank perturbations of unitary and Hermitian matrices have been proposed. These structured eigenvalue problems appear naturally when computing roots, via confederate linearizations, of polynomials expressed in, for example, the monomial or Chebyshev basis. Often, however, it is not known beforehand whether or not a matrix can be written as the sum of a Hermitian or unitary matrix plus a low‐rank perturbation. In this paper, we give necessary and sufficient conditions characterizing the class of Hermitian or unitary plus low‐rank matrices. The number of singular values deviating from 1 determines the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for Hermitian matrices; the eigenvalues of the skew‐Hermitian part differing from 0 dictate the rank of the perturbation. We prove that these relations are linked via the Cayley transform. Then, based on these conditions, we identify the closest Hermitian or unitary plus rank k matrix to a given matrix A, in Frobenius and spectral norm, and give a formula for their distance from A. Finally, we present a practical iteration to detect the low‐rank perturbation. Numerical tests prove that this straightforward algorithm is effective.  相似文献   

9.
In this work, we propose an efficient matrix decomposition algorithm for the Method of Fundamental Solutions when applied to three-dimensional boundary value problems governed by elliptic systems of partial differential equations. In particular, we consider problems arising in linear elasticity in axisymmetric domains. The proposed algorithm exploits the block circulant structure of the coefficient matrices and makes use of fast Fourier transforms. The algorithm is also applied to problems in thermo-elasticity. Several numerical experiments are carried out.  相似文献   

10.
In this paper it is shown that Neville elimination is suited to exploit the rank structure of an order-r quasiseparable matrix ACn×n by providing a condensed decomposition of A as product of unit bidiagonal matrices, all together specified by O(nr) parameters, at the cost of O(nr3) flops. An application of this result for eigenvalue computation of totally positive rank-structured matrices is also presented.  相似文献   

11.
Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.  相似文献   

12.
In this work we reduce the computation of the singular values of a general product/quotient of matrices to the computation of the singular values of an upper triangular semiseparable matrix. Compared to the reduction into a bidiagonal matrix the reduction into semiseparable form exhibits a nested subspace iteration. Hence, when there are large gaps between the singular values, these gaps manifest themselves already during the reduction algorithm in contrast to the bidiagonal case.  相似文献   

13.
A fast numerical algorithm for solving systems of linear equations with tridiagonal block Toeplitz matrices is presented. The algorithm is based on a preliminary factorization of the generating quadratic matrix polynomial associated with the Toeplitz matrix, followed by the Sherman-Morrison-Woodbury inversion formula and solution of two bidiagonal and one diagonal block Toeplitz systems. Tight estimates of the condition numbers are provided for the matrix system and the main matrix systems generated during the preliminary factorization. The emphasis is put on rigorous stability analysis to rounding errors of the Sherman-Morrison-Woodbury inversion. Numerical experiments are provided to illustrate the theory.  相似文献   

14.
Summary. The standard procedure to compute the singular value decomposition of a dense matrix, first reduces it into a bidiagonal one by means of orthogonal transformations. Once the bidiagonal matrix has been computed, the QR–method is applied to reduce the latter matrix into a diagonal one. In this paper we propose a new method for computing the singular value decomposition of a real matrix. In a first phase, an algorithm for reducing the matrix A into an upper triangular semiseparable matrix by means of orthogonal transformations is described. A remarkable feature of this phase is that, depending on the distribution of the singular values, after few steps of the reduction, the largest singular values are already computed with a precision depending on the gaps between the singular values. An implicit QR–method for upper triangular semiseparable matrices is derived and applied to the latter matrix for computing its singular values. The numerical tests show that the proposed method can compete with the standard method (using an intermediate bidiagonal matrix) for computing the singular values of a matrix.Mathematics Subject Classification (2000): 65F15, 15A18The research of the first two authors was partially supported by the Research Council K.U.Leuven, project OT/00/16 (SLAP: Structured Linear Algebra Package), by the Fund for Scientific Research–Flanders (Belgium), projects G.0078.01 (SMA: Structured Matrices and their Applications), G.0176.02 (ANCILA: Asymptotic aNalysis of the Convergence behavior of Iterative methods in numerical Linear Algebra), G.0184.02 (CORFU: Constructive study of Orthogonal Functions) and G.0455.0 (RHPH: Riemann-Hilbert problems, random matrices and Padé-Hermite approximation), and by the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Ministers Office for Science, Technology and Culture, project IUAP V-22 (Dynamical Systems and Control: Computation, Identification & Modelling). The work of the third author was partially supported by MIUR, grant number 2002014121. The scientific responsibility rests with the authors.Acknowledgments.We thank the referees for their suggestions which increased the readability of the paper.  相似文献   

15.
Given a system of functions, we introduce the concept of weighted φ‐transformed system, which will include a very large class of useful representations in Statistics and Computer Aided Geometric Design. An accurate bidiagonal decomposition of the collocation matrices of these systems is obtained. This decomposition is used to present computational methods with high relative accuracy for solving algebraic problems with collocation matrices of weighted φ‐transformed systems such as the computation of eigenvalues, singular values, and the solution of some linear systems. Numerical examples illustrate the accuracy of the performed computations.  相似文献   

16.
A (0, ±1) matrix A is restricted unimodular if every matrix obtained from A by setting to zero any subset of its entries is totally unimodular. Restricted unimodular matrices are also known as matrices without odd cycles. They have been studied by Commoner and recently Yannakakis has given a polynomial algorithm to recognize when a matrix belongs to this class. A matrix A is strongly unimodular if any matrix obtained from A by setting at most one of its entries to zero is totally unimodular. Crama et al. have shown that (0,1) matrix A is strongly unimodular if and only if any basis of (A, 1) is triangular, whereI is an identity matrix of suitable dimensions. In this paper we give a very simple algorithm to test whether a matrix is restricted unimodular and we show that all strongly unimodular matrices can be obtained by composing restricted unimodular matrices with a simple operation. Partially supported by a New York University Research Challenge Fund Grant.  相似文献   

17.
对称双正型线性互补问题的多重网格迭代解收敛性理论   总被引:4,自引:0,他引:4  
多重网格法是七十年代产生并获得迅速发展的快速送代法.八十年代初,此方法开始应用于变分不等式的求解,其中包括一类互补问题,近十年来大量的数值实验证实,算法是成功的,而算法的收敛性理论也正在逐步建立,当A正定对称时的多重网格收敛性可见[3]和[7];[4]讨论了A半正定时的情况·本文考虑A为更广的一类矩阵:对称双正阵(见定义1.1),建立互补问题:  相似文献   

18.
An algorithm for computing the complete CS decomposition of a partitioned unitary matrix is developed. Although the existence of the CS decomposition (CSD) has been recognized since 1977, prior algorithms compute only a reduced version. This reduced version, which might be called a 2-by-1 CSD, is equivalent to two simultaneous singular value decompositions. The algorithm presented in this article computes the complete 2-by-2 CSD, which requires the simultaneous diagonalization of all four blocks of a unitary matrix partitioned into a 2-by-2 block structure. The algorithm appears to be the only fully specified algorithm available. The computation occurs in two phases. In the first phase, the unitary matrix is reduced to bidiagonal block form, as described by Sutton and Edelman. In the second phase, the blocks are simultaneously diagonalized using techniques from bidiagonal SVD algorithms of Golub, Kahan, Reinsch, and Demmel. The algorithm has a number of desirable numerical features.   相似文献   

19.
A new explicit formula for the integrals of Bernstein polynomials of any degree for any order in terms of Bernstein polynomials themselves is derived. A fast and accurate algorithm is developed for the solution of high even-order boundary value problems (BVPs) with two point boundary conditions but by considering their integrated forms. The Bernstein–Petrov–Galerkin method (BPG) is applied to construct the numerical solution for such problems. The method is then tested on examples and compared with other methods. It is shown that the BPG yields better results.  相似文献   

20.
Shape preserving representations and optimality of the Bernstein basis   总被引:6,自引:0,他引:6  
This paper gives an affirmative answer to a conjecture given in [10]: the Bernstein basis has optimal shape preserving properties among all normalized totally positive bases for the space of polynomials of degree less than or equal ton over a compact interval. There is also a simple test to recognize normalized totally positive bases (which have good shape preserving properties), and the corresponding corner cutting algorithm to generate the Bézier polygon is also included. Among other properties, it is also proved that the Wronskian matrix of a totally positive basis on an interval [a, ) is also totally positive.Both authors were partially supported by DGICYT PS90-0121.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号