首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the behavior of bundles of optimal controls when the initial state of the system goes to some given vector. We investigate three types of optimization problems: problems with fixed process length and a free right endpoint; problems with fixed process length and a fixed right endpoint; time-optimal problems. The article is a review of recent results obtained by the author. __________ Translated from Nelineinaya Dinamika i Upravlenie, No. 4, pp. 301–314, 2004.  相似文献   

2.
Approximation properties of pseudo-parabolic optimal controls to the parabolic optimal control are considered for two concrete problems.  相似文献   

3.
Mixed control-state constraints are used as a relaxation of originally state constrained optimal control problems for partial differential equations to avoid the intrinsic difficulties arising from measure-valued multipliers in the case of pure state constraints. In particular, numerical solution techniques known from the pure control constrained case such as active set strategies and interior-point methods can be used in an appropriately modified way. However, the residual-type a posteriori error estimators developed for the pure control constrained case can not be applied directly. It is the essence of this paper to show that instead one has to resort to that type of estimators known from the pure state constrained case. Up to data oscillations and consistency error terms, they provide efficient and reliable estimates for the discretization errors in the state, a regularized adjoint state, and the control. A documentation of numerical results is given to illustrate the performance of the estimators.  相似文献   

4.
5.
6.
First, let u g be the unique solution of an elliptic variational inequality with source term g. We establish, in the general case, the error estimate between $u_{3}(\mu)=\mu u_{g_{1}}+ (1-\mu)u_{g_{2}}$ and $u_{4}(\mu)=u_{\mu g_{1}+ (1-\mu) g_{2}}$ for ????[0,1]. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy g for each positive heat transfer coefficient h given on a part of the boundary of the domain. For a given cost functional and using some monotony property between u 3(??) and u 4(??) given in Mignot (J.?Funct. Anal. 22:130?C185, 1976), we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter h goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot??s conical differentiability) which is a great advantage with respect to the proof given in Gariboldi and Tarzia (Appl. Math. Optim. 47:213?C230, 2003), for optimal control problems governed by elliptic variational equalities.  相似文献   

7.
We prove existence and uniqueness results for non-linear elliptic equations with lower order terms, L1 data, and mixed boundary conditions that include as particular cases the Dirichlet and the Neumann problems. Mathematics Subject Classification (2000) 35J25, 35D05, 35J70, 35J60  相似文献   

8.
9.
We study in this paper the finite element approximations to elliptic optimal control problems with boundary observations. The main feature of this kind of optimal control problems is that the observations or measurements are the outward normal derivatives of the state variable on the boundary, this reduces the regularity of solutions to the optimal control problems. We propose two kinds of finite element methods: the standard FEM and the mixed FEM, to efficiently approximate the underlying optimal control problems. For both cases we derive a priori error estimates for problems posed on polygonal domains. Some numerical experiments are carried out at the end of the paper to support our theoretical findings.  相似文献   

10.
For elliptic partial differential equations, mixed boundary conditions generate singularities in the solution, mainly when the boundary of the domain is connected. We here consider two classical cases: the Laplace equation and the Lamé system. The knowledge of singularities allows us to construct adapted Rellich relations. These are useful in the problem of boundary stabilization of the wave equation and the elastodynamic system, respectively, when using the multiplier method.  相似文献   

11.
In this paper we deal with the following mixed Dirichlet-Neumann elliptic problems
(1)  相似文献   

12.
《Optimization》2012,61(6):833-849
A family of linear-quadratic optimal control problems with pointwise mixed state-control constraints governed by linear elliptic partial differential equations is considered. All data depend on a vector parameter of perturbations. Lipschitz stability with respect to perturbations of the optimal control, the state and adjoint variables, and the Lagrange multipliers is established.  相似文献   

13.
The numerical solution of linear elliptic partial differential equations often involves finite element discretization, where the discretized system is usually solved by some conjugate gradient method. The crucial point in the solution of the obtained discretized system is a reliable preconditioning, that is to keep the condition number of the systems under control, no matter how the mesh parameter is chosen. The PCG method is applied to solving convection-diffusion equations with nonhomogeneous mixed boundary conditions. Using the approach of equivalent and compact-equivalent operators in Hilbert space, it is shown that for a wide class of elliptic problems the superlinear convergence of the obtained preconditioned CGM is mesh independent under FEM discretization.  相似文献   

14.
A Neumann boundary control problem for a linear-quadratic elliptic optimal control problem in a polygonal domain is investigated. The main goal is to show an optimal approximation order for discretized problems after a postprocessing process. It turns out that two saturation processes occur: The regularity of the boundary data of the adjoint is limited if the largest angle of the polygon is at least 2π/3. Moreover, piecewise linear finite elements cannot guarantee the optimal order, if the largest angle of the polygon is greater than π/2. We will derive error estimates of order h α with α∈[1,2] depending on the largest angle and properties of the finite elements. Finally, numerical test illustrates the theoretical results.  相似文献   

15.
Mariano Mateos  Arnd Rösch 《PAMM》2007,7(1):1060505-1060506
A Neumann boundary control problem for a linear-quadratic elliptic optimal control problem in a polygonal domain is investigated. The main goal is to show an optimal approximation order for discretized problems after a postprocessing process. It turns out that two saturation processes occur: The regularity of the boundary data of the adjoint state is limited if the largest angle of the polygon is at least 2π /3. Moreover, piecewise linear finite elements cannot guarantee the optimal order, if the largest angle of the polygon is greater than π /2. We will derive error estimates of order hσ with σ ∈ [3/2, 2] depending on the largest angle and properties of the finite elements. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We investigate the discretization of optimal boundary control problems for elliptic equations on two-dimensional polygonal domains by the boundary concentrated finite element method. We prove that the discretization error ||u*-uh*||L2(G)\|u^{*}-u_{h}^{*}\|_{L^{2}(\Gamma)} decreases like N −1, where N is the total number of unknowns. This makes the proposed method favorable in comparison to the h-version of the finite element method, where the discretization error behaves like N −3/4 for uniform meshes. Moreover, we present an algorithm that solves the discretized problem in almost optimal complexity. The paper is complemented with numerical results.  相似文献   

17.
This work is concerned with the convergence of a monotone method for fourth-order semilinear elliptic boundary value problems. A comparison result for the rate of convergence is given. The global error is analyzed, and some sufficient conditions are formulated for guaranteeing a geometric rate of convergence.  相似文献   

18.
In this paper, we consider the efficient solving of the resulting algebraic system for elliptic optimal control problems with mixed finite element discretization. We propose a block‐diagonal preconditioner for the symmetric and indefinite algebraic system solved with minimum residual method, which is proved to be robust and optimal with respect to both the mesh size and the regularization parameter. The block‐diagonal preconditioner is constructed based on an isomorphism between appropriately chosen solution space and its dual for a general control problem with both state and gradient state observations in the objective functional. Numerical experiments confirm the efficiency of our proposed preconditioner.  相似文献   

19.
We consider solving linear, second order, elliptic partial differential equations with boundary conditions of types Dirichlet (DIR), mixed (MIX), and nearly Neumann (Neu) by using software modules that implement five numerical methods (one finite element and four finite differences). They represent both the new generation of improved methods and the traditional ones; they are: Hermite collocation plus band Gauss elimination (HC), ordinary finite differences plus band Gauss elimination (5P), ordinary finite differences with Dyaknov iteration (DY), DY with Richardson extrapolation to achieve fourth order convergence (D4), and ordinary finite differences with multigrid iteration (MG). We carry out a performance evaluation in which we measure the grid size and the computer time needed to achieve three significant digits of accuracy in the solution. We compute the changes in these two measures as we change boundary condition types from DIR to MIX and MIX to NEU and then test the following hypotheses: (i) the performance of all the modules is degraded by introducing the derivative terms into the boundary conditions; (ii) finite element collocation (HC) is least affected; (iii) the fourth order modules (HC and D4) are less affected than the other second order modules; and (iv) the traditional 5-point finite differences (5P) are most affected. We establish these hypotheses with high levels of confidence by using several sample problems. The most significant conclusion is that a high order collocation method is preferred for problems with general operators and derivatives in the boundary conditions. We also establish with considerable confidence that these modules have the following rankings in absolute comparative time performance: MG (best), HC and D4, DY, and 5P (worst).  相似文献   

20.
In this paper, we discuss the limit behaviour of optimal control problems governed by elliptic boundary value problems with equivalued surface when the equivalued surface boundary shrinks to a fixed point on the outer boundary of a bounded domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号