首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive multilevel finite element methods are developed and analyzed for certain elliptic systems arising in geometric analysis and general relativity. This class of nonlinear elliptic systems of tensor equations on manifolds is first reviewed, and then adaptive multilevel finite element methods for approximating solutions to this class of problems are considered in some detail. Two a posteriori error indicators are derived, based on local residuals and on global linearized adjoint or dual problems. The design of Manifold Code (MC) is then discussed; MC is an adaptive multilevel finite element software package for 2- and 3-manifolds developed over several years at Caltech and UC San Diego. It employs a posteriori error estimation, adaptive simplex subdivision, unstructured algebraic multilevel methods, global inexact Newton methods, and numerical continuation methods for the numerical solution of nonlinear covariant elliptic systems on 2- and 3-manifolds. Some of the more interesting features of MC are described in detail, including some new ideas for topology and geometry representation in simplex meshes, and an unusual partition of unity-based method for exploiting parallel computers. A short example is then given which involves the Hamiltonian and momentum constraints in the Einstein equations, a representative nonlinear 4-component covariant elliptic system on a Riemannian 3-manifold which arises in general relativity. A number of operator properties and solvability results recently established in [55] are first summarized, making possible two quasi-optimal a priori error estimates for Galerkin approximations which are then derived. These two results complete the theoretical framework for effective use of adaptive multilevel finite element methods. A sample calculation using the MC software is then presented; more detailed examples using MC for this application may be found in [26].  相似文献   

2.
We survey multilevel iterative methods applied for solving large sparse systems with matrices, which depend on a level parameter, such as arise by the discretization of boundary value problems for partial differential equations when successive refinements of an initial discretization mesh is used to construct a sequence of nested difference or finite element meshes.We discuss various two-level (two-grid) preconditioning techniques, including some for nonsymmetric problems. The generalization of these techniques to the multilevel case is a nontrivial task. We emphasize several ways this can be done including classical multigrid methods and a recently proposed algebraic multilevel preconditioning method. Conditions for which the methods have an optimal order of computational complexity are presented.On leave from the Institute of Mathematics, and Center for Informatics and Computer Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria. The research of the second author reported here was partly supported by the Stichting Mathematisch Centrum, Amsterdam.  相似文献   

3.
Cascadic multilevel methods for the solution of linear discrete ill-posed problems with noise-reducing restriction and prolongation operators recently have been developed for the restoration of blur- and noise-contaminated images. This is a particular ill-posed problem. The multilevel methods were found to determine accurate restorations with fairly little computational work. This paper describes noise-reducing multilevel methods for the solution of general linear discrete ill-posed problems.  相似文献   

4.
The problem of stabilizing linear systems whose parameters which are known with a finite accuracy (robust stabilization) is considered. Optimal control methods, which enable one to obtain positional solutions of special auxiliary optimal control problems, are used to construct bounded stabilizing feedbacks. The implementation of the proposed stabilization methods depends very much on the capabilities of modern computational technology. The results are illustrated by taking the robust stabilization of third- and fourth-order dynamical systems as examples.  相似文献   

5.
A new approach for constructing algebraic multilevel preconditioners for mixed finite element methods for second order elliptic problems with tensor coefficients on general geometry is proposed. The linear system arising from the mixed methods is first algebraically condensed to a symmetric, positive definite system for Lagrange multipliers, which corresponds to a linear system generated by standard nonconforming finite element methods. Algebraic multilevel preconditioners for this system are then constructed based on a triangulation of the domain into tetrahedral substructures. Explicit estimates of condition numbers and simple computational schemes are established for the constructed preconditioners. Finally, numerical results for the mixed finite element methods are presented to illustrate the present theory.  相似文献   

6.
While a large amount of papers are dealing with robust multilevel methods and algorithms for linear FEM elliptic systems, the related higher order FEM problems are much less studied. Moreover, we know that the standard hierarchical basis two-level splittings deteriorate for strongly anisotropic problems. A first robust multilevel preconditioner for higher order FEM systems obtained after discretizations of elliptic problems with an anisotropic diffusion tensor is presented in this paper. We study the behavior of the constant in the strengthened CBS inequality for semi-coarsening mesh refinement which is a quality measure for hierarchical two-level splittings of the considered biquadratic FEM stiffness matrices. The presented new theoretical estimates are confirmed by numerically computed CBS constants for a rich set of parameters (coarsening factor and anisotropy ratio). In the paper we consider also the problem of solving efficiently systems with the pivot block matrices arising in the hierarchical basis two-level splittings. Combining the proven uniform estimates with the theory of the Algebraic MultiLevel Iteration (AMLI) methods we obtain an optimal order multilevel algorithm whose total computational cost is proportional to the size of the discrete problem with a proportionality constant independent of the anisotropy ratio.  相似文献   

7.
Recently adaptive wavelet methods have been developed which can be shown to exhibit an asymptotically optimal accuracy/work balance for a wide class of variational problems including classical elliptic boundary value problems, boundary integral equations as well as certain classes of noncoercive problems such as saddle point problems. A core ingredient of these schemes is the approximate application of the involved operators in standard wavelet representation. Optimal computational complexity could be shown under the assumption that the entries in properly compressed standard representations are known or computable in average at unit cost. In this paper we propose concrete computational strategies and show under which circumstances this assumption is justified in the context of elliptic boundary value problems. Dedicated to Charles A. Micchelli on the occasion of his 60th birthday Mathematics subject classifications (2000) 41A25, 41A46, 65F99, 65N12, 65N55. This work has been supported in part by the Deutsche Forschungsgemeinschaft SFB 401, the first and third author are supported in part by the European Community's Human Potential Programme under contract HPRN-CT-202-00286 (BREAKING COMPLEXITY). The second author acknowledges the financial support provided through the European Union's Human Potential Programme, under contract HPRN-CT-2002-00285 (HASSIP) and through DFG grant DA 360/4–1.  相似文献   

8.
This paper discusses a class of multilevel preconditioners based on approximate block factorization for conforming finite element methods employing quadratic trial and test functions. The main focus is on diffusion problems governed by a scalar elliptic partial differential equation with a strongly anisotropic coefficient tensor. The proposed method provides a high robustness with respect to non‐grid‐aligned anisotropy, which is achieved by the interaction of the following components: (i) an additive Schur complement approximation to construct the coarse‐grid operator; (ii) a global block (Jacobi or Gauss–Seidel) smoother complementing the coarse‐grid correction based on (i); and (iii) utilization of an augmented coarse grid, which enhances the efficiency of the interplay between (i) and (ii). The performed analysis indicates the high robustness of the resulting two‐level method. Moreover, numerical tests with a nonlinear algebraic multilevel iteration method demonstrate that the presented two‐level method can be applied successfully in the recursive construction of uniform multilevel preconditioners of optimal or nearly optimal order of computational complexity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we implement a weak Milstein Scheme to simulate low-dimensional stochastic differential equations (SDEs). We prove that combining the antithetic multilevel Monte-Carlo (MLMC) estimator introduced by Giles and Szpruch with the MLMC approach for weak SDE approximation methods by Belomestny and Nagapetyan, we can achieve a quadratic computational complexity in the inverse of the Root Mean Square Error (RMSE) when estimating expected values of smooth functionals of SDE solutions, without simulating Lévy areas and without requiring any strong convergence of the underlying SDE approximation method. By using appropriate discrete variables this approach allows us to calculate the expectation on the coarsest level of resolution by enumeration, which, for low-dimensional problems, results in a reduced computational effort compared to standard MLMC sampling. These theoretical results are also confirmed by a numerical experiment.  相似文献   

10.
Preconditioners based on various multilevel extensions of two‐level finite element methods (FEM) lead to iterative methods which have an optimal order computational complexity with respect to the size of the system. Such methods were first presented in Axelsson and Padiy (SIAM. J. Sci. Stat. Comp. 1990; 20 :1807) and Axelsson and Vassilevski (Numer. Math. 1989; 56 :157), and are based on (recursive) two‐level splittings of the finite element space. The key role in the derivation of optimal convergence rate estimates is played by the constant γ in the so‐called Cauchy–Bunyakowski–Schwarz (CBS) inequality, associated with the angle between the two subspaces of the splitting. It turns out that only existence of uniform estimates for this constant is not enough but accurate quantitative bounds for γ have to be found as well. More precisely, the value of the upper bound for γ∈(0,1) is part of the construction of various multilevel extensions of the related two‐level methods. In this paper, an algebraic two‐level preconditioning algorithm for second‐order elliptic boundary value problems is constructed, where the discretization is done using Crouzeix–Raviart non‐conforming linear finite elements on triangles. An important point to make is that in this case the finite element spaces corresponding to two successive levels of mesh refinements are not nested. To handle this, a proper two‐level basis is considered, which enables us to fit the general framework for the construction of two‐level preconditioners for conforming finite elements and to generalize the method to the multilevel case. The major contribution of this paper is the derived estimates of the related constant γ in the strengthened CBS inequality. These estimates are uniform with respect to both coefficient and mesh anisotropy. To our knowledge, the results presented in the paper are the first such estimates for non‐conforming FEM systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Kernels are important in developing a variety of numerical methods, such as approximation, interpolation, neural networks, machine learning and meshless methods for solving engineering problems. A common problem of these kernel-based methods is to calculate inverses of kernel matrices generated by a kernel function and a set of points. Due to the denseness of these matrices, finding their inverses is computationally costly. To overcome this difficulty, we introduce in this paper an approximation of the kernel matrices by appropriate multilevel circulant matrices so that the fast Fourier transform can be applied to reduce the computational cost. Convergence analysis for the proposed approximation is established based on certain decay properties of the kernels.  相似文献   

12.
Multilevel methods are popular for the solution of well-posed problems, such as certain boundary value problems for partial differential equations and Fredholm integral equations of the second kind. However, little is known about the behavior of multilevel methods when applied to the solution of linear ill-posed problems, such as Fredholm integral equations of the first kind, with a right-hand side that is contaminated by error. This paper shows that cascadic multilevel methods with a conjugate gradient-type method as basic iterative scheme are regularization methods. The iterations are terminated by a stopping rule based on the discrepancy principle.  相似文献   

13.
Solving semidefinite-quadratic-linear programs using SDPT3   总被引:3,自引:1,他引:2  
 This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primal-dual path-following algorithms. The software developed by the authors uses Mehrotra-type predictor-corrector variants of interior-point methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported. Received: March 19, 2001 / Accepted: January 18, 2002 Published online: October 9, 2002 Mathematics Subject Classification (2000): 90C05, 90C22  相似文献   

14.
Principled techniques for incomplete-data problems are increasingly part of mainstream statistical practice. Among many proposed techniques so far, inference by multiple imputation (MI) has emerged as one of the most popular. While many strategies leading to inference by MI are available in cross-sectional settings, the same richness does not exist in multilevel applications. The limited methods available for multilevel applications rely on the multivariate adaptations of mixed-effects models. This approach preserves the mean structure across clusters and incorporates distinct variance components into the imputation process. In this paper, I add to these methods by considering a random covariance structure and develop computational algorithms. The attraction of this new imputation modeling strategy is to correctly reflect the mean and variance structure of the joint distribution of the data, and allow the covariances differ across the clusters. Using Markov Chain Monte Carlo techniques, a predictive distribution of missing data given observed data is simulated leading to creation of multiple imputations. To circumvent the large sample size requirement to support independent covariance estimates for the level-1 error term, I consider distributional impositions mimicking random-effects distributions assigned a priori. These techniques are illustrated in an example exploring relationships between victimization and individual and contextual level factors that raise the risk of violent crime.  相似文献   

15.
The aim of this paper is to display numerical results that show the interest of some multilevel methods for problems of parabolic type. These schemes are based on multilevel spatial splittings and the use of different time steps for the various spatial components. The spatial discretization we investigate is of spectral Fourier type, so the approximate solution naturally splits into the sum of a low frequency component and a high frequency one. The time discretization is of implicit/explicit Euler type for each spatial component. Based on a posteriori estimates, we introduce adaptive one-level and multilevel algorithms. Two problems are considered: the heat equation and a nonlinear problem. Numerical experiments are conducted for both problems using the one-level and the multilevel algorithms. The multilevel method is up to 70% faster than the one-level method.

  相似文献   


16.
Preconditioning techniques are widely used to speed up the convergence of iterative methods for solving large linear systems with sparse or dense coefficient matrices. For certain application problems, however, the standard block diagonal preconditioner makes the Krylov iterative methods converge more slowly or even diverge. To handle this problem, we apply diagonal shifting and stabilized singular value decomposition (SVD) to each diagonal block, which is generated from the multilevel fast multiple algorithm (MLFMA), to improve the stability and efficiency of the block diagonal preconditioner. Our experimental results show that the improved block diagonal preconditioner maintains the computational complexity of MLFMA, converges faster and also reduces the CPU cost.  相似文献   

17.
Finite element approximations of an elliptic control problem are analyzed. Optimal order estimates are obtained in terms of the mesh size h and the target ψ A computational scheme is derived which allows for the application of the conjugate gradient method. The scheme is implemented and tested on some model problems.  相似文献   

18.
The GeoSteiner software package has for about 20 years been the fastest (publicly available) program for computing exact solutions to Steiner tree problems in the plane. The computational study by Warme, Winter and Zachariasen, published in 2000, documented the performance of the GeoSteiner approach—allowing the exact solution of Steiner tree problems with more than a thousand terminals. Since then, a number of algorithmic enhancements have improved the performance of the software package significantly. We describe these (previously unpublished) enhancements, and present a new computational study wherein we run the current code on the largest problem instances from the 2000-study, and on a number of larger problem instances. The computational study is performed using the commercial GeoSteiner 4.0 code base, and the performance is compared to the publicly available GeoSteiner 3.1 code base as well as the code base from the 2000-study. The software studied in the paper is being released as GeoSteiner 5.0 under an open source license.  相似文献   

19.
This paper deals with the application of multilevel least-change Newton-like methods for solving twice continuously differentiable equality constrained optimization problems. We define multilevel partial-inverse least-change updates, multilevel least-change Newton-like methods without derivatives and multilevel projections of fragments of the matrix for Newton-like methods without derivatives. Local andq-superlinear convergence of these methods is proved. The theorems here also imply local andq-superlinear convergence of many standard Newton-like methods for nonconstrained and equality constraine optimization problems.  相似文献   

20.
This paper deals with the Traveling Salesman Problem (TSP) with Draft Limits (TSPDL), which is a variant of the well-known TSP in the context of maritime transportation. In this recently proposed problem, draft limits are imposed due to restrictions on the port infrastructures. Exact algorithms based on three mathematical formulations are proposed and their performance compared through extensive computational experiments. Optimal solutions are reported for open instances of benchmark problems available in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号