首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CuL2 · 1.5H2O and ML2 · 2H2O · 2EtOH (M = Co2+, Ni2+, Mn2+) coordination compounds were synthesized via the exchange reaction between the sodium salt of 3-methyl-1-phenyl-4-formylpyrazol-5-one (HL) and metal chlorides.The synthesized compounds were studied by thermogravimetry, magnetochemistry, and electron and IR spectroscopy. The complexes CuL2 · 2Py and CoL2 · 2Py · MeOH were obtained via recrystallization from a methanol-pyridine mixture, and their structures were studied by X-ray diffraction. Pyrazolone was found to be coordinated in the deprotonated enol form and to form six-membered chelate rings with a metal. The coordination polyhedron of a metal cation was found to be a square bipyramid (Cu2+) or an axially elongated octahedron (Co2+) with its vertices occupied by the oxygen atoms of 3-methyl-1-phenyl-4-formylpyrazol-5-one and the nitrogen atoms of pyridine.  相似文献   

2.
本文报道2,2′-(1,2-亚乙基双氮次甲基)二喹啉及其与Cu2+、 Zn2+、 Ni2+、 Mn2+配合物的合成,并通过元素分析、红外光谱、紫外光谱、X-射线粉末衍射、热分析及核磁共振等手段对配体和配合物进行了表征。配合物的化学组成为M.L.(ClO4)2·H2O(M=Cu2+、 Zn2+、 Ni2+、 Mn2+离子;L=C22H18N4)。  相似文献   

3.
Methods were developed for the synthesis of complexes of CoII, NiII, and CuII nitrates and chlorides with N-(1-phenylethylidene)-N-(4H-1,2,4-triazol-4-yl)amine (L1) and N′-(4H-1,2,4-triazol-4-yl)benzamidine (L2). The CoII and NiII complexes have a linear trinuclear structure. The CuII complexes are polynuclear. Both ligands are coordinated to the metal ions in a bidentate-bridging mode through the N(1) and N(2) atoms of the heterocycle. In all compounds, the coordination polyhedron can be described as a distorted octahedron. The molecular and crystal structure of the [Ni3(L1)6(EtOH)2(H2O)4](NO3)6·2EtOH·4H2O complex was established.  相似文献   

4.
The three ligands H4dota, H4teta, and H4heta give binuclear complexes with Cu2+ and Ni2+, the spectral properties of which have been studied. The structures of Cu2(dota)·5H2O and Cu2(teta)·6H2O have been established by X-ray diffraction analysis.  相似文献   

5.
Four new metal-organic coordination compounds [Ni(L4)2](ClO4)2 · 2H2O ( 1 ), [Cu2(L4)2(H2O)2(Cl)](Cl)3 · 5H2O ( 2 ), [Cu2(L3)2(H2O)(Cl)](Cl)2 · (NO3) · 6H2O ( 3 ), and [Cu(L3)(H2O)(NO3)](NO3) · H2O ( 4 ), were synthesized and characterized by X-ray crystallography with two isomeric tripodal ligands N1-(2-amino-ethyl)-N1-pyridin-3-ylmethyl-ethane-1,2-diamine (L3) and N1-(2-amino-ethyl)-N1-pyridin-4-ylmethyl-ethane-1,2-diamine (L4), respectively. It was found that coordination compound 1 exhibits mononuclear structure, and coordination compound 2 displays a one dimensional (1D) zigzag chain structure. Coordination compound 3 shows interesting cyclic hexanuclear structure, whereas coordination compound 4 is a 1D zigzag chain structure. The results indicate that metal ions, organic ligands, and anions have remarkable influence on the formation and structures of the coordination compounds.  相似文献   

6.
Seven new bi‐ and polyhomonuclear transition metal complexes with three polyhydroxlated bisazodianil ligands were synthesized and characterized. The ligands were derived from condensation of 6‐(5‐formyl‐2‐hydroxyphenylazo)‐2,4‐dihydroxypyrimidine with aliphatic diamines (H8L1, H8L2 and H6L3). The data of elemental and thermal analyses, molar conductance measurement, IR, electronic and ESR spectra as well as magnetic moment measurements support the formation of [L1Co7Cl6(H2O)10]·22H2O ( 1 ), [H2L2Mn6Cl6(H2O)8]·3H2O·2EtOH ( 3 ), [L2Co8Cl8(H2O)12]·24H2O ( 4 ), [H4L3Co2Cl2(H2O)2]·8H2O·2EtOH ( 6 ) with a tetrahedral geometry and [H2L1Ni5Cl4(H2O)16]·19H2O·EtOH ( 2 ), [L2Ni8Cl8(H2O)28]·8H2O·EtOH ( 5 ) with an octahedral geometry while [H6L3Cu3(H2O)7]Cl3·10H2O ( 7 ) has a distorted tetrahedral arrangement. The mode of bonding between the metal ions and the ligand molecules is determined and the metal‐metal interaction was studied. The activation thermo‐kinetic parameters for the thermal decomposition steps of the complexes E*, ΔH*, ΔS*, and ΔG* were calculated.  相似文献   

7.
Three mixed-ligand transition metal coordination polymers with the formula of {[CuI2CuII(tpt)2(L)] · 15H2O}n ( 1 ) and {[M2(H2O)5(tpt)(L)] · 6H2O}n [M = Ni for 2 and Co for 3 ; tpt = 2,4,6-tris(4-pyridyl)-1,3,5-triazine and L = 3,3'-disulfonyl-4,4'-biphenyldicarboxylate] were hydrothermally synthesized by varying the cheap paramagnetic metal ions and used as photocatalysts for hydrogen evolution from water splitting and rhodamine B (RhB) degradation. Single-crystal structural determinations reveal that 1 is a robust pillared-layer framework with unusual 72-membered {Cu6(tpt)6} macrocycle-based layers supported by tetratopic L4– connectors. Both 2 and 3 are isostructural (4 4) sheets with octahedral NiII and CoII ions extended by ditopic L4– and tpt linkages, in which the third pyridyl group of tpt is capped by pentahydrated metal ions. Due to the narrowed bandgap and good charge transport of the mixed-valence CuI/II centers, 1 exhibits improved dual-functional catalytic activities than 2 and 3 with the visible-light-driven hydrogen evolution rate and RhB degradation efficiency up to 588 μmol · g–1 · h–1 and 72 % after 180-minute irradiation. These interesting results indicate the importance of the metal ions and the dimensionality of the coordination polymers on the activity of the non-Pt coordination polymer photocatalytic systems.  相似文献   

8.
Polyol Metal Complexes. 491) μ‐Dulcitolato‐O2, 3;4, 5 Complexes with CuII(en) and NiII(tren) Metal Fragments The dinuclear ethylenediamine‐copper(II) complex of the tetra‐anion of the achiral alditol dulcitol (galactitol) is remarkable, since it was the first crystalline carbohydrate—metal complex ever reported (W. Traube, G. Glaubitt, V. Schenck, Ber. Dtsch. Chem. Ges. 1930 , 63, 2083—2093). Although its existence is recognized for many decades, its structure remained unknown due to a kind of crystal packing that promotes twinning. Crystal growth at low temperatures now yielded crystalline specimens of [(en)2Cu2(Dulc2, 3, 4, 5H—4)] · 7 H2O ( 1 ) that have allowed us to unravel both the crystal structure and the twinning law. Closely related molecular structures are adopted by [(tren)2Ni2(Dulc2, 3, 4, 5H—4)] · 20 H2O ( 2 ) and [(Me3tren)2Ni2(Dulc2, 3, 4, 5H—4)] · 16 H2O ( 3 ), the latter showing the shortest hydrogen bond towards a polyolate acceptor ever found (O···O distance: 2.422Å).  相似文献   

9.
The complexes [Ni2(L)2]2 · H2O ( 1 ) and [Cu2(L)2(H2O)] · 2CH3OH ( 2 ) were prepared by reaction of the chiral Schiff base ligand N‐[(1R,2S)‐2‐hydroxy‐1,2‐diphenyl]‐acetylacetonimine (H2L) with NiII and CuII ions, respectively, aiming to develop economically and environmentally‐friendly catalysts for the hydrogenation of ketones. They have a dinuclear skeleton with axial vacant sites. The catalytic effects of the two complexes for hydrogenation of ketones were tested using dihydrogen gas as hydrogen source. They present some catalytic effects in hydrogenation of acetophenone, which has a dependence on the temperature and base used in these reactions. However, no apparent catalytic effects were found for the two complexes in hydrogenation of 4‐nitroacetophenone and 4‐methylacetophenone. Although the catalytic conversion in these hydrogenation reactions is low, they do represent a kind of cheap and environmentally‐friendly hydrogenation catalyst.  相似文献   

10.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

11.
Two new trinuclear complexes [CuII(NiIIX1)2(C2H5OH)2]· (ClO4)2·2(CH3OH) ( 1 ) and [CuII(NiIIX2)2(H2O)]·(ClO4)2· 0.75(H2O) ( 2 ) (X1 = dianion of 5,6;13,14‐dibenzo‐7,12‐bis(ethoxycarboxyl)‐9‐methyl‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca‐7,11‐diene. X2 = dianion of 5,6;13,14‐dibenzo‐9,10‐cyclohexano‐7,12‐bis(ethoxycarboxyl)‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca7,11‐diene.) have been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR, UV and EPR spectroscopies. The complexes consist of NiIICuIINiII heteronuclear cationic entities. The central CuII atom of 1 lies in an octahedral coordination environment, while that of 2 resides in a square‐pyramidal coordination sphere. The adjacent trinuclear units of 1 are linked together through π‐π stacking interactions resulting in a 1D supramolecular chain, whereas the π‐π stacking interactions between the contiguous units of 2 lead to a 2D structure. The EPR spectra of the two complexes show a signal of an axially elongated octahedral CuII system in 1 and an axially elongated square‐pyramidal CuII system in 2 , respectively. The hyperfine splitting of the CuII atoms (ICu = 3/2) has also been observed in the EPR spectra.  相似文献   

12.
The binuclear cation of the title compound, [Ni2(C33H29­N4O3)(H2O)4]C2H3O2·C3H7NO·0.75H2O, was synthesized as a model for the active site of urease. Two tridentate halves of the symmetrical 2,6‐bis{[(2‐hydroxy­phenyl)(2‐pyridyl­methyl)­amino]­methyl}‐4‐methyl­phenolate (BPPMP3?) ligand are arranged in a meridional fashion around the two NiII ions, with the phenoxo O atom bridging the NiII ions. The cation has an approximate twofold rotation axis running through the C—O bond of the bridging phenolate group. Four water mol­ecules complete the octahedral environment of each NiII ion.  相似文献   

13.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:19,20-tribenzo-9,12,15,18-tetraoxacyclounkosa-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and Cu(NO3)2· 3H2O, Ni(NO3)2· 6H2O, Pb(NO3)2, Co(NO3)2· 6H2O, La(NO3)3·6H2O respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, u.v–vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoIII complex was oxidized to CoIII.  相似文献   

14.
New macrocyclic lactones were synthesized by reaction of 3-bromo-5-(5-tert-butyl-2-hydroxybenzyl)biphenyl-4-ol with appropriate polyethylene glycol-based dicarboxylic acid dichlorides, and their complexes with Mg(ClO4)2·6H2O, Pb(SCN)2, NaClO4·H2O, and KClO4 were prepared. The macrocyclic ligands were evaluated as extractants in the transfer of Li+, Na+, K+, Cu2+, Ni2+, and Hg2+ picrates from aqueous to organic phase. Published in Russian in Zhurnal Organicheskoi Khimii, 2008, Vol. 44, No. 9, pp. 1400–1405. The text was submitted by the authors in English.  相似文献   

15.
In this study, a simple approach was described for the fabrication of CaSO4/Fe0 composite used as a novel adsorbent for the reductive removal of Cu2+ from aqueous solutions. The magnetic CaSO4/Fe0 composite was prepared by a solid state reaction at 550 °C in the H2 atmosphere using CaSO4·2H2O/α-FeOOH as a precursor. The structure and morphology of the as-synthesized magnetic composite were characterized by X-ray diffraction, field emission scanning electron microscopy and a superconducting quantum interference device, respectively. Results showed that the CaSO4/Fe0 composite with a rod-like shape could be easily acquired from the CaSO4·2H2O/α-FeOOH precursor with the ratio of 1:0.5 at 550 °C in the H2 atmosphere for 1 h. The CaSO4/Fe0 composite exhibited enhanced performance relevant to the reductive removal of Cu2+. The removal amount of Cu2+ increased linearly with increasing of concentration of Cu2+ in wastewater. Possible removal mechanisms were proposed as follows: (1) the formation of Cu2O by fast reduction of Cu2+ with Fe0 nanoparticles on interface of CaSO4/Fe0 composite, (2) proper adsorption of Cu2+ on the surface of CaSO4/Fe0 composite, (3) the hydrous iron oxide (HIO) such as Fe (OH)3 and FeOOH in situ generated on the rest of CaSO4/Fe0 composite could further adsorb Cu2+ from wastewater.  相似文献   

16.
A facile and effective solution phase reduction method was developed to synthesize graphene-based magnetic metal nanocomposites. Metals (Co, and Ni) or alloys (Fe51Co49, Fe48Ni52, Ni49Co51, Co51Cu49, and Ni52Cu48)/reduced graphene oxide (RGO) nanocomposites were successfully prepared by reduction of the corresponding aqueous metal ions and ethylenediamine (EDA)–graphene oxide (GO) with hydrazine hydrate at 353 K for 1 h under N2 atmosphere. The effects of synthetic parameters such as metal ions concentration, adding sequence of NaOH and N2H4·H2O, linkage agent and reaction time on the formation of nanocomposites were investigated. The experimental results showed that using ethylenediamine and adding sequence played critical roles in the formation of metals or alloys/RGO nanocomposites. Magnetic hysteresis measurements revealed that the as-synthesized metals or alloys in nanocomposites showed excellent soft magnetic behavior with enhanced saturation magnetization, and could have promising applications in biotechnology, catalysis, and magnetic storage devices.  相似文献   

17.
Abstract. The self‐assembly of glycyl‐L ‐leucine, Cu(NO3)2 · 3H2O and 4, 4′‐bipyridine resulted in the tetranuclear‐based metal‐dipeptide supramolecular framework [Cu4(C8H14N2O3)4(H2O)2(C10H8N2)2] · (C10H8N2) · 13H2O ( 1 ). In the structure, the 4, 4′‐bipyridine‐bridged tetranuclear complex of CuII‐glycyl‐L ‐leucine interacts with each other to form a 1D hydrogen‐bonded chain including uncoordinated 4, 4′‐bipyridine and an interesting water chain in different channels. Under similar reaction conditions, racemic glycyl‐D ,L ‐leucine gave rise to the centrosymmetric dinuclear complex [Cu2(C8H14N2O3)2(C10H8N2)] · 2H2O ( 2 ), which is linked into a 2D hydrogen‐bonded structure without 4, 4′‐bipyridine included.  相似文献   

18.
Summary The structure of the hexaazamacrobicycle, sarcophagine, (diAMMEsar)·2H2O, formed by extracting Co ion from the [Co(diAMMEsar H2)]Cl5·-H2O cage with 8-hydroxyquinoline, has been determined by elemental analysis, and i.r., u.v.-vis., 1H-n.m.r. and mass spectroscopies. Two octahedral complexes, [M(diAMM-EsarH2)]Cl4·2H2O (M = NiII or CuII), have been prepared and characterized. The e.s.r. spectrum of the CuII complex in the solid state indicates spin-exchange interaction between the CuII ions. However, in CD3OD-D2O (10%) at 77K, the spectrum is characteristic of a compound having axial symmetry (d x 2y 2).  相似文献   

19.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures.  相似文献   

20.
Coordination complexes of transition metal cations (CoII, NiII, CuII and ZnII) containing coumarilate and N,N′-diethylnicotinamide were synthesized. The structural characterization and thermal behaviour analysis of novel samples synthesized were conducted through elemental analysis, magnetic susceptibility, solid-state UV–Vis, direct and injection probe mass spectra, FTIR spectra, thermoanalytic TG-DTG/DTA and single crystal X-ray diffraction methods. The structural details of single crystals of [Co(dena)2(H2O)4](coum)2 (I) and [Cu(coum)2(dena)2(H2O)2] (III) complexes were resolved completely. Moreover, the results of analysis obtained for [Ni(coum)2(dena)2(H2O)2] (II) and [Zn(dena)2(H2O)4](coum)2 (IV) complexes were interpreted considering the samples with crystal structures defined and made assumptions about the structural details. It was determined that the complex of CoII metal cation has salt-type structure and the coordination number of metal is accomplished to six as the sum of 4 mol of water and also 2 mol of N,N′-diethylnicotinamide ligands in trans position located within the coordination sphere. It was observed that 2 mol of coumarilate anions are located outside the coordination sphere and have stabilized to the charge (2+) of metal. The CuII complex has totally molecular structure, and the coordination sphere of metal cation was 6 as the sum of 2 mol of water, 2 mol of N,N′-diethylnicotinamide and 2 mol of monoanionic monodentate coumarilate ligands. All ligands have been located in –trans position. The geometry of both complex structures is distorted octahedral. It is assumed that the NiII complex structure is isostructural with CuII complex structure and also does ZnII complex with CoII structure. It was determined that the decomposition products obtained from thermal analysis are the oxides of related metal cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号