首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Starting from an essentially commutative exponential map E(B|I) for generic tensor-valued 2-forms B, which were introduced in [10] as a direct generalization of the ordinary noncommutative P exponent for 1 forms with values in matrices (i.e., in tensors of rank 2), we suggest a nontrivial but multiparametric exponential E(B|I|tγ), which can serve as an interesting multidirectional evolution operator in the case of higher ranks. To emphasize the most important aspects of the article, the construction is restricted to the backgrounds I ijk , which are associated with the structure constants of the commutative associative algebras, which make it insensitive to the topology of the 2D surface. Boundary effects are also eliminated (straightforward generalization is needed to incorporate them).  相似文献   

2.
We calculate the Komar energy E for a noncommutative inspired Schwarzschild black hole. A deformation from the conventional identity E = 2ST H is found in the next to leading order computation in the noncommutative parameter θ (i.e. \({\mathcal{O}(\sqrt{\theta}e^{-M^2/\theta})}\)) which is also consistent with the fact that the area law now breaks down. This deformation yields a nonvanishing Komar energy at the extremal point T H  = 0 of these black holes. We then work out the Smarr formula, clearly elaborating the differences from the standard result M = 2ST H , where the mass (M) of the black hole is identified with the asymptotic limit of the Komar energy. Similar conclusions are also shown to hold for a deSitter–Schwarzschild geometry.  相似文献   

3.
The study of Weyl semimetals is one of the most challenging problems of condensed matter physics. These materials exhibit interesting properties in a magnetic field. In this work, we investigate the Landau bands and the density of states (DOS) oscillations in a Weyl semimetal in crossed magnetic and electric fields. An expression is obtained for the energy spectrum of the system using the following three different methods: an algebraic approach, a Lorentz shift-based approach, and a quasi-classical approach. It is interesting that the energy spectrum calculated in terms of the quasi-classical approach coincides with the spectrum obtained using the microscopic approaches. An electric field is shown to change the Landau bands radically. In addition, the classical motion of a three-dimensional Dirac fermion in crossed fields is studied. In the case of a Dirac spectrum, the longitudinal (with respect to magnetic field) component of momentum (p z H) is shown to be an oscillating function of the magnetic field. When the electric field is vH/c, the Landau levels collapse and the motion becomes fully linear in an unusual manner. In this case, the wavefunction of bulk states vanishes and only states with p z = 0 are retained. An electric field affects the character of DOS oscillations. An analytical expression is obtained for the quantum capacitance in crossed fields in the cases of strong and weak electric fields. Thus, an electric field is an additional parameter for adjusting the diamagnetic properties of Weyl semimetals.  相似文献   

4.
The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2S 1/2, 2P 1/2 and 2P 3/2 were obtained by using the ?? and the \(\bar \theta \) modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2P 1/2 and 2P 3/2 were removed completely by ??-correction. And the \(\bar \theta \)-correction shifts these energy levels.  相似文献   

5.
The Pv criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner–Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the Pv criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid–gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity \(\varPsi \) conjugate to the noncommutative parameter \(\theta \) has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.  相似文献   

6.
Taking into account the inexhaustible interest in studying the peculiarities of physical properties in the neighborhood of phase transitions and the growth of experimental investigations of cobalt fluoride, we have studied the peculiarities of magnetic susceptibility in the vicinity of the critical field HC at which cobalt fluoride performs the second-order phase transition from the antiferromagnetic phase to the angular phase. It is discovered that in the magnetic field HC4, the magnetic susceptibility becomes infinite at HHC. It is shown that as the magnetic field direction deviates from the C4 axis, the magnetic susceptibility in the critical field HC proves to be finite. It is also shown that the change in the magnetic susceptibility with the change in the magnetic field considerably decreases at extremely insignificant deviations of the field H from the C4 axis. Since the calculations are performed in terms of the Landau theory of phase transitions, we pay attention to the similarity and difference between the obtained results and those in the vicinity of the Curie point obtained by using the Landau theory of phase transitions.  相似文献   

7.
We introduce the noncommutative geometry inspired Ayón Beato García black hole metric and study various properties of this metric by which we try to probe the allowed values of the noncommutative parameter \(\vartheta \) under certain conditions. We then construct the shadow (apparent shape) cast by this black hole. We derive the corresponding photon orbits and explore the effects of noncommutative spacetime on them. We then study the effects of noncommutative parameter \(\vartheta \), smeared mass m(r), smeared charge q(r) on the silhouette of the shadow analytically and present the results graphically. We then discuss the deformation which arises in the shape of the shadow under various conditions. Finally, we introduce a plasma background and observe how the shadow behaves in this scenario.  相似文献   

8.
Double Chooz is an experiment that is devoted to searches for reactor-antineutrino oscillations at the CHOOZ nuclear power plant. This project is aimed at measuring the unknown mixing angle θ 13. It is assumed that the value of θ 13 will be extracted from an analysis of the distortion of the antineutrino spectra obtained in relative measurements at two distances from the nuclear reactors by means of two identical detectors. The method makes it possible to minimize systematic errors of the experiment and to improve the sensitivity to the sought parameter. To date, the most stringent constraint on the parameter θ 13 was obtained from the CHOOZ experiment in 1995–1997 [sin2(2θ 13) < 0.19, with the difference of the squares of the neutrino masses being Δm 13 2 = 2.5 × 10?3 eV2].  相似文献   

9.
We study the precision of parameter estimation for dephasing model under squeezed environment. We analytically calculate the dephasing factor γ(t) and obtain the analytic quantum Fisher information (QFI) for the amplitude parameter α and the phase parameter ?. It is shown that the QFI for the amplitude parameter α is invariant in the whole process, while the QFI for the phase parameter ? strongly depends on the reservoir squeezing. It is shown that the QFI can be enhanced for appropriate squeeze parameters r and θ. Finally, we also investigate the effects of temperature on the QFI.  相似文献   

10.
We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of theIsing model, employing the Glauber spin-flip mechanism, in space dimensionsd = 2 and3, on square and simplecubic lattices. Results for the persistence probability and the domain growth arediscussed for quenches to various temperatures (T f ) below the criticalone (T c ), from differentinitial temperatures T i T c . In long timelimit, for T i >T c ,the persistence probability exhibits power-law decay with exponents θ ? 0.22 and? 0.18 in d = 2 and 3, respectively. For finite T i , the early timebehavior is a different power-law whose life-time diverges and exponent decreases asT i T c . The two steps areconnected via power-law as a function of domain length and the crossover to the secondstep occurs when this characteristic length exceeds the equilibrium correlation length atT =T i . T i =T c is expected toprovide a new universality class for which we obtain θθ c ? 0.035 ind = 2 and?0.105 in d = 3. The time dependenceof the average domain size ?, however, is observed to be rather insensitive tothe choice of T i .  相似文献   

11.
We study two relevant characterizations of a commutative positive operator valued measure (POVM) F. The first one is a Choquet type of an integral representation. It introduces a measure ν on the space of the projection valued measures (PVMs) and describes F as an integral over this space. The second one represents a commutative POVM F as the randomization of a single PVM E by means of a Markov kernel μ. We show that one can be derived from the other. We also elaborate upon some previous results on Choquet’s representation of Markov kernels and find a functional relationship between ν and μ. Finally, we analyze some relevant particular cases and provide some physically relevant examples which include the unsharp position observables.  相似文献   

12.
Let M be a compact Kähler manifold equipped with a Hamiltonian action of a compact Lie group G. In this paper, we study the geometric quantization of the symplectic quotient M // G. Guillemin and Sternberg [Invent. Math. 67, 515–538 (1982)] have shown, under suitable regularity assumptions, that there is a natural invertible map between the quantum Hilbert space over M //G and the G-invariant subspace of the quantum Hilbert space over M.Reproducing other recent results in the literature, we prove that in general the natural map of Guillemin and Sternberg is not unitary, even to leading order in Planck’s constant. We then modify the quantization procedure by the “metaplectic correction” and show that in this setting there is still a natural invertible map between the Hilbert space over M // G and the G-invariant subspace of the Hilbert space over M. We then prove that this modified Guillemin–Sternberg map is asymptotically unitary to leading order in Planck’s constant. The analysis also shows a good asymptotic relationship between Toeplitz operators on M and on M // G.  相似文献   

13.
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos \({\mathcal{T}(A)}\) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra \({\underline{A}}\) . According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum \({\underline{\Sigma}(\underline{A})}\) in \({\mathcal{T}(A)}\) , which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on \({\underline{\Sigma}}\) , and self-adjoint elements of A define continuous functions (more precisely, locale maps) from \({\underline{\Sigma}}\) to Scott’s interval domain. Noting that open subsets of \({\underline{\Sigma}(\underline{A})}\) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos \({\mathcal{T}(A)}\).These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.  相似文献   

14.
15.
In this contribution, we investigate a TTLAs (two two-level atoms) in interaction with an electromagnetic field in presence of the external classical fields. The general solution of the time evolution operator is obtained and used to derive the density matrix operator. The temporal evolution of the atomic inversion, the degree of entanglement measured by the negativity, as well as the single atom entropy squeezing are discussed. We consider the atomic system at either the upper or Bell states, while the field in the coherent state. It has been shown that the coupling parameter g (the coupling of the external classical fields) gets more effective for the case in which the g is not equal to zero. Also for a strong coupling parameter g the superstructure phenomenon can be reported. The results shown that for increase the value of the classical external fields parameter leads to the entanglement between the atoms and the fields gets stronger. Also it has shown that for specific value of the classical external fields the system never reaches the pure state except during the revival periods.  相似文献   

16.
We study the melting of charge order in the half doped manganites using a model thatincorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller couplingbetween electrons and phonons. We primarily use a real space Monte Carlo technique tostudy the phase diagram in terms of applied field (h) and temperature(T),exploring the melting of charge order with increasing h and its recovery ondecreasing h.We observe hysteresis in this response, and discover that the “field melted” highconductance state can be spatially inhomogeneous even without extrinsic disorder. Thehysteretic response plays out in the background of field driven equilibrium phaseseparation. Our results, exploring h, T, and the electronic parameter space, are backedup by analysis of simpler limiting cases and a Landau framework for the field response.This paper focuses on our results in the “clean” systems, a companion paper studies theeffect of cation disorder on the melting phenomena.  相似文献   

17.
The impact of long-range spin-spin correlations on the structure of a flat portion in single-particle spectra ξ(p), which emerges beyond the point where the Landau state loses its stability, is studied. We supplement the well-known Nozieres model of a Fermi system with limited scalar long-range forces by a similar long-range spin-dependent term and calculate the spectra versus its strength g. It is found that Nozieres' results hold as long as g>0. However, with g changing its sign, the spontaneous magnetization is shown to arise at any nonzero g. The increase in the strength |g| is demonstrated to result in shrinkage of the domain in momentum space, occupied by the flat portion of ξ(p), and, eventually, in its vanishing.  相似文献   

18.
We consider a quantum charged particle moving in the xy plane under the action of a time-dependent magnetic field described by means of the linear vector potential A = H(t) [?y(1 + β), x(1 ? β)] /2 with a fixed parameter β. The systems with different values of β are not equivalent for nonstationary magnetic fields due to different structures of induced electric fields, whose lines of force are ellipses for |β| < 1 and hyperbolas for |β| > 1. Using the approximation of the stepwise variation of the magnetic field H(t), we obtain explicit formulas describing the evolution of the principal squeezing in two pairs of noncommuting observables: the coordinates of the center of orbit and relative coordinates with respect to this center. Analysis of these formulas shows that no squeezing can arise for the circular gauge (β = 0). On the other hand, for any nonzero value of β, one can find the regimes of excitations resulting in some degree of squeezing in the both pairs. The maximum degree of squeezing can be obtained for the Landau gauge (|β| = 1) if the magnetic field is switched off and returns to the initial value after some time T, in the limit T → ∞.  相似文献   

19.
In this paper we investigate the analytical properties of the scalar expansion θ in the cosmic fluid close to the future singularity, when the fluid possesses a constant bulk viscosity ζ in the framework of Kaluza-Klein theory of gravitation. In addition, we assume the viscous cosmology theories in the sense that the Casimir contributions to the energy density and pressure are both proportional to 1/a 4, where a being scale factor. We also worked out the series expansion for the scalar expansion θ under the condition that the Casimir influence is small. However, near to the big rip singularity the Casimir term has to fade away and we obtain the same singularity behavior for the scalar expansion θ, energy density ρ, the scale factor a as in the Casimir-free viscous case.  相似文献   

20.
We report on measurements of the electrical conductivity on a two-dimensional packing of metallic disks when a stable current of ~1 mA flows through the system. At low applied currents, the conductance σ is found to increase by a pattern σ(t) = σ ? Δσ E α [ ? (t/τ) α ], where E α denotes the Mittag-Leffler function of order α ∈ (0,1). By changing the inclination angle θ of the granular bed from horizontal, we have studied the impact of the effective gravitational acceleration g eff = gsinθ on the relaxation features of the conductance σ(t). The characteristic timescale τ is found to grow when effective gravity g eff decreases. By changing both the distance between the electrodes and the number of grains in the packing, we have shown that the long term resistance decay observed in the experiment is related to local micro-contacts rearrangements at each disk. By focusing on the electro-mechanical processes that allow both creation and breakdown of micro-contacts between two disks, we present an approach to granular conduction based on subordination of stochastic processes. In order to imitate, in a very simplified way, the conduction dynamics of granular material at low currents, we impose that the micro-contacts at the interface switch stochastically between two possible states, “on” and “off”, characterizing the conductivity of the micro-contact. We assume that the time intervals between the consecutive changes of state are governed by a certain waiting-time distribution. It is demonstrated how the microscopic random dynamics regarding the micro-contacts leads to the macroscopic observation of slow conductance growth, described by an exact fractional kinetic equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号