首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.  相似文献   

2.
In this paper we give a generalized form of the Schrödinger equation in the relativistic case, which contains a generalization of the Klein-Gordon equation. By complex Legendre transformation, the complex Lagrangian of electrodynamics produces a complex relativistic Hamiltonian H of electrodynamics, on the holomorphic cotangent bundle T′* M. By a special quantization process, a relativistic time dependent Schrödinger equation, in the adapted frames of (T′* M, H) is obtained. This generalized Schrödinger equation can be expressed with respect to the Laplace operator of the complex Hamilton space (T′*M, H). Finally, under some additional conditions on the proper time s of the complex space-time M and the time parameter t along the quantum state, by the method of separation of variables, we obtain two classes of solutions for the Schrödinger equation, one for the weakly gravitational complex curved space M, and the second in the complex space-time with Schwarzschild metric.  相似文献   

3.
The amplitude and phase of the wavefunctions obeying the optical lossless cubic-quintic Schrödinger equation for relatively weak nonlinearity relative to fifth degree are determined for relevant values of two fundamental dynamical parameters involved in the aforementioned wavefunctions, one of them being the solitary-wave velocity which is assumed to be positive and small enough.  相似文献   

4.
The relation between multiparticle Schrödinger equations and the underlying field theory for weakly coupled systems is clarified. A systematic perturbation theory for the energy levels is presented the first term of which is the eigenvalue of a Schrödinger equation with relativistic kinematics.  相似文献   

5.
The connection is made between a many-time approach to S-matrix elements and energy eigenvalues, which naturally arises from a field theoretical point of view, and the single time Schrödinger- and Breit-like formalism often used in detailed calculations for many-particle systems, such as many-electron atoms. Specifically, the many-particle Bethe-Salpeter equation is expressed in terms of the corresponding Schrödinger equation for the non-relativistic case in which the Bethe-Salpeter kernel consists of only two-particle local static interactions. Also, the one-photon transition matrix element for this case in the Bethe-Salpeter formalism is shown to be equivalent to the corresponding well-known Schrödinger result. The treatment developed is well suited to systematic relativistic generalization.  相似文献   

6.
环形振子势的精确解   总被引:8,自引:1,他引:7  
陈昌远  孙东升 《光子学报》2001,30(1):104-107
将环形振子势的Schrödinger方程在球坐标系中进行变量分离.然后求解了角向方程和径向方程,给出了精确的能谱方程.获得了用普遍的缔合Legendre多项式表示的归一化的角向波函数和用合流超几何函数表示的归一化的径向波函数.  相似文献   

7.
The variety of bi-confluent Heun potentials for a stationary relativistic wave equation for a spinless particle is presented. The physical potentials and energy spectrum of this wave equation are related to those for a corresponding Schrödinger equation in the sense that all the potentials derived for the latter equation are also applicable for the wave equation under consideration. We show that in contrast to the Schrödinger equation the characteristic spatial length of the potential imposes a restriction on the energy spectrum that directly reflects the uncertainty principle. Studying the inversesquare- root bi-confluent Heun potential, it is shown that the uncertainty principle limits, from below, the principal quantum number for the bound states, i.e., physically feasible states have an infimum cut so that the ground state adopts a higher quantum number as compared to the Schrödinger case.  相似文献   

8.
The relativistic problems of neutral fermions subject to a new partially exactly solvable PT-symmetric potential and an exactly solvable PT-symmetric hyperbolic cosecant potential in 1+1 dimensions are investigated. The Dirac equation with the double-well-like mass distribution in the background of the PT-symmetric vector potential coupling can be mapped into the Schrödinger-like equation with the partially exactly solvable double-well potential. The position-dependent effective mass Dirac equation with the PT-symmetric hyperbolic cosecant potential can be mapped into the Schrödinger-like equation with the exactly solvable modified Pöschl-Teller potential. The real relativistic energy levels and corresponding spinor wavefunctions for the bound states have been given in a closed form.  相似文献   

9.
We are developing a covariant model for all mesons that can be described as quark-antiquark bound states in the framework of the Covariant Spectator Theory (CST) in Minkowski space. The kernel of the bound-state equation contains a relativistic generalization of a linear confining potential which is singular in momentum space and makes its numerical solution more difficult. The same type of singularity is present in the momentum-space Schrödinger equation, which is obtained in the nonrelativistic limit. We present an alternative, singularity-free form of the momentum-space Schrödinger equation which is much easier to solve numerically and which yields accurate and stable results. The same method will be applied to the numerical solution of the CST bound-state equations.  相似文献   

10.
We propose a method for constructing the wavefunctions of excited states of the discrete spectrum for an N-dimensional Schrödinger equation in which the structure of a potential is determined by systems of roots of the Lie algebras.  相似文献   

11.
The relation between the density matrix obeying the von Neumann equation and the wave function obeying the Schrödinger equation is discussed in connection with the superposition principle of quantum states. The definition of the ray-addition law is given, and its relation to the addition law of vectors in the Hilbert space of states and the role of a constant phase factor of the wave function is elucidated. The superposition law of density matrices, Wigner functions, and tomographic probabilities describing quantum states in the probability representation of quantum mechanics is studied. Examples of spin-1/2 and Schrödinger-cat states of the harmonic oscillator are discussed. The connection of the addition law with the entanglement problem is considered.  相似文献   

12.
《Physics letters. A》2020,384(13):126263
It is shown that the Schrödinger equation for a large family of pairs of two–dimensional quantum potentials possess wavefunctions for which the amplitude and the phase are interchangeable, producing two different solutions which are dual to each other. This is a property of solutions with vanishing Böhm potential. These solutions can be extended to three–dimensional systems. We explicitly calculate dual solutions for physical systems, such as the repulsive harmonic oscillator and the two–dimensional hydrogen atom. These dual wavefunctions are also solutions of an analogue optical system in the eikonal limit. In this case, the potential is related to the refractive index, allowing the study of this two–dimensional dual wavefunction solutions with an optical (analogue) system.  相似文献   

13.
Effective mass Schrödinger equation is solved exactly for a given potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function. The effective mass Schrödinger equation is also solved for the Morse potential transforming to the constant mass Schrödinger equation for a potential. One can also get solution of the effective mass Schrödinger equation starting from the constant mass Schrödinger equation.  相似文献   

14.
A theorem generalizing a result due to Schrödinger on the possible multi-valuedness of quantum wavefunctions is proved. Relevant examples show that double-valued wavefunctions do exist, at least in problems of a theoretical interest.  相似文献   

15.
In this paper we consider a one-dimensional non-linear Schrödinger equation with a periodic potential. In the semiclassical limit we prove the existence of stationary solutions by means of the reduction of the non-linear Schrödinger equation to a discrete non-linear Schrödinger equation. In particular, in the limit of large nonlinearity strength the stationary solutions turn out to be localized on a single lattice site of the periodic potential. A connection of these results with the Mott insulator phase for Bose–Einstein condensates in a one-dimensional periodic lattice is also discussed.  相似文献   

16.
The symmetries of a free incompressible fluid span the Galilei group, augmented with independent dilations of space and time. When the fluid is compressible, the symmetry is enlarged to the expanded Schrödinger group, which also involves, in addition, Schrödinger expansions. While incompressible fluid dynamics can be derived as an appropriate non-relativistic limit of a conformally invariant relativistic theory, the recently discussed conformal Galilei group, obtained by contraction from the relativistic conformal group, is not a symmetry. This is explained by the subtleties of the non-relativistic limit.  相似文献   

17.
A collisionless Boltzmann equation, describing long waves in a dense gas of particles interacting via short-range forces, is shown to be equivalent to the Benney equations, which describe long waves in a perfect two-dimensional fluid with a free surface. These equations also describe, in a random phase approximation, the evolution, on long space and time scales, of multiply periodic solutions of the nonlinear Schrödinger equation. The derivative nonlinear Schrödinger equation is likewise shown to be related to an integrable system of moment equations.  相似文献   

18.
This paper presents a fractional Schrödinger equation and its solution. The fractional Schrödinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrödinger equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Schrödinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.  相似文献   

19.
20.
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrödinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号