首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation (RSP) can be successfully realized via the positive operator valued measure (POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.  相似文献   

2.

A scheme for the controlled joint remote preparation of an arbitrary six-qubit cluster-type state by using only two sets of five-qubit GHZ states as quantum channel is proposed. In our scheme, Alice firstly performs two sets of two-qubit projective measurement according to the real coefficients and the complex coefficients of the desired six-qubit cluster-type state. Then, the controller Charlie must apply another two-qubit projective measurement according to the Alice’s measurement result. Finally, Bob can obtain the desired six-qubit cluster-type state according to an appropriate unitary operation. Our scheme can achieve unit success probability.

  相似文献   

3.
Using four Einstein-Podolsky-Rosen (EPR) pairs as the pre-shared quantum channel, an economic and feasible scheme for deterministic joint remote preparation of the four-particle cluster-type state is presented. In the scheme, one of the senders performs a four-qubit projective measurement based on a set of ingeniously constructed vectors with real coefficients, while the other performs the bipartite projective measurements in terms of the imaginary coefficients. Followed with some appropriate unitary operations and controlled-NOT operations, the receiver can reconstruct the desired state. Compared with other analogous JRSP schemes, our scheme can not only reconstruct the original state (to be prepared remotely) with unit successful probability, but also ensure greater efficiency.  相似文献   

4.
We put forward a new and feasible scheme to realize joint remote preparation of four-particle cluster-type states based on two quaternate partially entangled states as quantum channels. During the preparation, each of the states’ senders is just required to perform a bipartite projective measurement in a 2×2-dimensional Hilbert space, and the receiver needs to implement some appropriate unitary operations including a local triplet collective transformation. It is proved that our scheme can be accomplished in a probabilistic manner, and the success probability of preparation (SPP) is dependent on the entangled states set up in prior. Moreover, it is explored that SPP can be greatly enhanced to be quadruple of that in general case, when the prepared states belong to some special ensembles. And the scheme feasibility is evaluated finally.  相似文献   

5.
We propose two novel schemes for remotely preparing a four-qubit cluster-type entangled state (FCES) with complex coefficients by using four EPR pairs and two three-qubit GHZ states as the quantum channel, respectively. To complete the remote state preparation (RSP) schemes, several novel sets of four-and two-qubit measuring basis were introduced. In these schemes, after the sender performs two different projective measurements, the receiver should introduce two auxiliary qubits and employ suitable C-NOT gates on his qubits, the original state can be reconstructed with unit successful probability. Compared with the previous schemes for the RSP of a FCES, the advantage of the present schemes is that the entanglement resource can be reduced.  相似文献   

6.
We consider the remote preparation of a six-particle cluster-type state using two four-particle GHZ states as the quantum channel in this paper. For the entangled six-particle cluster-type state with real coefficients, a deterministic remote state preparation scheme is proposed. It is shown that, conditioned on the outcome of Alice’s measurement, Bob can successfully prepare the target state by performing an appropriate unitary operation. With regard to the more general six-particle cluster-type state, we give another scheme which can successfully prepare the entangled state with probability 25%. And the probability of success can reach up to 50% or even 1 in some special cases. Furthermore, the classical communication costs in different cases are discussed.  相似文献   

7.
We propose a scheme for remotely preparing a four-qubit cluster-type state with complex coefficients by using six EPR pairs as the quantum channel. To complete the remote state preparation scheme, a novel set of four-qubit mutually orthogonal basis vectors has been introduced. It is shown that, after the sender performs two different four-qubit projective measurements, the receiver can reconstruct the original state (to be prepared remotely) with unit successful probability. Moreover, the scheme is also generalized to the case that non-maximally two-qubit entangled states are taken as the quantum channel.  相似文献   

8.
A scheme for remotely preparingan arbitrary five-qubit Brown state by using three three-qubit GHZ states as the quantum channel is proposed. It is shown that, after the sender performs two different three-qubit projective measurements, the receiver should introduce two auxiliary qubits and employ suitable C-NOT gates, Toffoli gate and unitary operations on his qubits, the original state can be recovered with unit probability. Compared with the previous scheme, the advantage of the present scheme is that the entanglement resource can be reduced.  相似文献   

9.
We present two schemes for deterministic assisted clone(DAC) of an unknown two- and three-qubit entangled states with assistance via muti-qubit Brown state. In the schemes, the sender wish to teleport an unknown original entangled state which from the state preparer, and then create a perfect copy of the unknown state at her place. The DAC schemes include two stages. The first stage requires teleportation with Bell-state measurements via a five-qubit Brown state(or seven-qubit Brown state) as the quantum channel. In the second stage, to help the sender realize the quantum cloning, the state preparer performs projective measurements on their own particles which from the sender, then the sender can acquire a perfect copy of the unknown state by means of some appropriate unitary operations. Furthermore, the total success probability for assisted cloning a perfect copy of the unknown state can reach 1 in our schemes.  相似文献   

10.

Two deterministic schemes are put forward to preparing an arbitrary four-qubit cluster-type state remotely by using two Bell states as quantum channel. The coefficients of the prepared states can be not only real, but also complex. To accomplish the schemes, we introduce some novel sets of ingenious measurement basis vectors. Especially, for complex coefficients case, we give two different forms schemes. The receiver will reconstruct the initial state by means of some appropriate unitary operations. The outstanding advantage of the present schemes is that the success probability in all the considered remote state preparation (RSP) can reach 1.

  相似文献   

11.
We propose a seven-qubit entangled channel that can be used to realize the deterministic quantum information splitting of an arbitrary three-qubit state. We describe the construction of this channel and explicitly demonstrate how the protocol works. In this scheme, three Bell state measurements and a single-qubit measurement are indispensable.  相似文献   

12.
A protocol for remotely preparing a four-particle entangled cluster-type state by a set of new four-particle orthogonal basis projective measurement. It is secure that the entangled four-particle cluster-type state can be successfully realized at Bob place. Moreover we have also investigated that quantum channel shared by Alice and Bob is composed of four non-maximally entangled states. It is shown that Bob can also reestablish the original state (to be prepared remotely) with certain probability by means of appropriate unitary transformation.  相似文献   

13.
In this paper, by constructing some useful measurement bases, we first show that two senders can jointly prepare a three-qubit state of complex coefficients to a remote receiver via the shared three GHZ states. Then, the success probability can be improved by using the permutation group to classify the preparation state. Furthermore, under some different measurement bases, we propose another scheme to jointly prepare a three-qubit state of real coefficients with less restrictions. Finally, the present schemes are extended to multi-sender, and the classical communication costs of all the schemes are also calculated.  相似文献   

14.
In this work, we propose a scheme to realize a joint remote preparation of an arbitrary three-qubit state using six EPR-type pairs as the shared quantum resource. By determining the right measurement bases for the preparers and right ancilla-assisted unitary transformation/recovery operations for the receiver, our scheme applies to the most general case when all the coefficients of the state to be prepared and the EPR-type pairs are complex. The total success probability is found to be dependent only on the “smaller” coefficients of the EPR-type pairs shared between the receiver and one of the preparers.  相似文献   

15.
We present a scheme for quantum information splitting of an arbitrary three-qubit state by using a seven-qubit composite GHZ-Bell state as quantum channel. We illustrate the procedure in the ion-trap systems, but the scheme can also be realized in other systems.  相似文献   

16.
A new application of the W-class state is investigated for quantum state sharing (QSTS) of an arbitrary three-qubit state. We demonstrate that four sets of W-class states can be used to realize the deterministic QSTS of an arbitrary three-qubit state based on the three-qubit von Neumann measurements and the local unitary operations. Our scheme considered here is secure against certain eavesdropping attacks.  相似文献   

17.
In this paper, an efficient proposal for quantum controlled teleporatation of arbitrary multi-qubit states is presented via three-qubit non-maximally entangled states. The successful probability is viewed as one of the most important performance parameters for quantum teleportation. The significant advantage of our scheme is that the successful probability is independent of the coefficients of partially entangled states, and is always equal to 100% in spite of using non-maximally quantum channel. From the concrete implementation processes of this proposal, it could be found that only the usual Bell-state measurement, simple single-qubit projective measurement and common single-qubit local unitary operations, of which the physical realization has been widely explored, need to be performed without the introduction of auxiliary particles.  相似文献   

18.
We propose a novel quantum teleportation protocol for certain class of five-qubit state with a seven-qubit cluster state as quantum channel. In our scheme, the sender merely needs to perform a seven-qubit von-Neumann projective measurement, the original state with deterministic probability can be reconstructed by the receiver after a series corresponding unitary transformations. Compared with other schemes proposed before, our scheme has the distinct advantages of requiring fewer quantum channels, possessing higher intrinsic efficiency, and transmitting more quantum information bits.  相似文献   

19.
王东  查新未  祁建霞  贺瑶 《光子学报》2012,41(3):335-338
本文提出了一个新颖的基于四粒子cluster态和Bell态制备任意三粒子远程制备方案.在发送者(Alice)对自己手中的粒子做正交完备测量,接受者(Bob)对自己手中的粒子做适当的幺正变换后,任意三粒子远程制备成功.对于Alice的两种不同的正交完备基测量的情况,分别计算了远程制备成功的概率.另外,本方案成功制备的概率在一般情况和一些特殊情况下是可以计算的.分析结果表明:在一般情况下,远程态制备可以以1/8的概率实现;但在一些特殊情况下,成功的概率可以提高到1/4、1/2,甚至1.  相似文献   

20.
A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号