首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently Zhu (Int. J. Theor. Phys. 53, 4095, 2014) had shown that using GHZ-like states as quantum channel, it is possible to teleport an arbitrary unknown two-qubit state. We investigate this channel for the teleportation of an arbitrary N-qubit state. The strict proof through mathematical induction is presented and the rule for the receiver to reconstruct the desired state is explicitly derived in the most general case. We also discuss that if a system of quantum secret sharing of classical message is established, our protocol can be transformed to a N-qubit perfect controlled teleportation scheme from the controller’s point of view.  相似文献   

2.
A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.  相似文献   

3.
The determination of the uncertainty measures of multidimensional quantum systems is a relevant issue per se and because these measures, which are functionals of the single-particle probability density of the systems, describe numerous fundamental and experimentally accessible physical quantities. However, it is a formidable task (not yet solved, except possibly for the ground and a few lowest-lying energetic states) even for the small bunch of elementary quantum potentials which are used to approximate the mean-field potential of the physical systems. Recently, the dominant term of the Heisenberg and Rényi measures of the multidimensional harmonic system (i.e., a particle moving under the action of a D-dimensional quadratic potential, D > 1) has been analytically calculated in the high-energy (i.e., Rydberg) and the high-dimensional (i.e., pseudoclassical) limits. In this work we determine the exact values of the Rényi uncertainty measures of the D-dimensional harmonic system for all ground and excited quantum states directly in terms of D, the potential strength and the hyperquantum numbers.  相似文献   

4.
The Rényi entropies Rp [ ρ], p> 0,≠ 1 of the highly-excited quantum states of the D-dimensional isotropicharmonic oscillator are analytically determined by use of the strong asymptotics of theorthogonal polynomials which control the wavefunctions of these states, the Laguerrepolynomials. This Rydberg energetic region is where the transition from classical toquantum correspondence takes place. We first realize that these entropies are closelyconnected to the entropic moments of the quantum-mechanical probability ρn(r)density of the Rydberg wavefunctions Ψn,l, { μ}(r); so, to the?p-norms of the associated Laguerrepolynomials. Then, we determine the asymptotics n → ∞ of these norms by use of modern techniques ofapproximation theory based on the strong Laguerre asymptotics. Finally, we determine thedominant term of the Rényi entropies of the Rydberg states explicitly in terms of thehyperquantum numbers (n,l), the parameter order p and the universedimensionality D for all possible cases D ≥ 1. We find that (a) theRényi entropy power decreases monotonically as the order p is increasing and (b) thedisequilibrium (closely related to the second order Rényi entropy), which quantifies theseparation of the electron distribution from equiprobability, has a quasi-Gaussianbehavior in terms of D.  相似文献   

5.
6.
Making an ansatz to the wave function, the exact solutions of the D-dimensional radial Schrödinger equation with some molecular potentials, such as pseudoharmonic and modified Kratzer, are obtained. Restrictions on the parameters of the given potential, δ and ν are also given, where η depends on a linear combination of the angular momentum quantum number ? and the spatial dimensions D and δ is a parameter in the ansatz to the wave function. On inserting D = 3, we find that the bound state eigensolutions recover their standard analytical forms in literature.  相似文献   

7.
We propose a total measure of multi-particle quantum correlation in a system of N two-level atoms (N qubits). We construct a parameter that encompasses all possible quantum correlations among N two-level atoms in arbitrary symmetric pure states and define its numerical value to be the total measure of the net atom-atom correlations. We use that parameter to quantify the total quantum correlations in atomic Schrödinger cat states, which are generated by the dispersive interaction in a cavity. We study the variation of the net amount of quantum correlation as we vary the number of atoms from N=2 to N=100 and obtain some interesting results. We also study the variation of the net correlation, for fixed interaction time, as we increase the number of atoms in the excited state of the initial system, and notice some interesting features. We also observe the behaviour of the net quantum correlation as we continuously increase the interaction time, for the general state of N two-level atoms in a dispersive cavity.  相似文献   

8.
The Green’s function associated with a Klein–Gordon particle moving in a D-dimensional space under the action of vector plus scalar q-deformed Hulthén potentials is constructed by path integration for \({q \geq 1}\) and \({\frac{1}{\alpha} \ln q < r < \infty}\). An appropriate approximation of the centrifugal potential term and the technique of space-time transformation are used to reduce the path integral for the generalized Hulthén potentials into a path integral for q-deformed Rosen–Morse potential. Explicit path integration leads to the radial Green’s function for any l state in closed form. The energy spectrum and the correctly normalized wave functions, for a state of orbital quantum number \({l \geq 0}\), are obtained. Eventually, the vector q-deformed Hulthén potential and the Coulomb potentials in D dimensions are considered as special cases.  相似文献   

9.
Alice and Bob are two remote parties. We propose a probabilistic method which allows Alice to map remotely and conclusively Bob’s set of nonorthogonal symmetric d-level quantum states onto another. The procedure we use is a remote positive operator valued measurement (POVM) in Bob’s (2d-1)-level direct sum space. We construct a quantum network for implementing this (2d-1)-level remote nonunitary POVM with (d-1) two-level remote unitary rotations. The fact that the two-level remote rotation, which is hired to rotate remotely a basis vector, can been implementing rapidly using only one ebit (a two-level Einstein-Podolsky-Rosen (EPR) pair) and one cbit (classical communication) is notable. This scheme is simpler but with less resource, which will make it more feasible and suitable for large-scale quantum network.  相似文献   

10.
The effects of single-ion anisotropy on quantum criticality in a d-dimensional spin-S planar ferromagnet is explored by means of the two-time Green’s function method. We work at the Tyablikov decoupling level for exchange interactions and the Anderson-Callen decoupling level for single-ion anisotropy. In our analysis a longitudinal external magnetic field is used as the non-thermal control parameter and the phase diagram and the quantum critical properties are established for suitable values of the single-ion anisotropy parameter D. We find that the single-ion anisotropy has sensible effects on the structure of the phase diagram close to the quantum critical point. However, for values of the uniaxial crystal-field parameter below a positive threshold, the conventional magnetic-field-induced quantum critical scenario remains unchanged.  相似文献   

11.
This paper presents a comprehensive perspective of the metric of quantum states with a focus on the geometry in the background independent quantum mechanics. We also explore the possibilities of geometrical formulations of quantum mechanics beyond the quantum state space and Kähler manifold. The metric of quantum states in the classical configuration space with the pseudo-Riemannian signature and its possible applications are explored. On contrary to the common perception that a metric for quantum state can yield a natural metric in the configuration space when the limit ?→0, we obtain the metric of quantum states in the configuration space without imposing the limiting condition ?→0. Here Planck’s constant ? is absorbed in the quantity like Bohr radii \(\frac{1}{2mZ\alpha}\sim a_{0}\). While exploring the metric structures associated with Hydrogen like atom, we witness another interesting finding that the invariant lengths appear in the multiple of Bohr’s radii as: ds 2=a 0 2 (? Ψ)2.  相似文献   

12.
Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.  相似文献   

13.
Gapped ground states of quantum spin systems have been referred to in the physics literature as being ‘in the same phase’ if there exists a family of Hamiltonians H(s), with finite range interactions depending continuously on \({s\in [0,1]}\), such that for each s, H(s) has a non-vanishing gap above its ground state and with the two initial states being the ground states of H(0) and H(1), respectively. In this work, we give precise conditions under which any two gapped ground states of a given quantum spin system that ’belong to the same phase’ are automorphically equivalent and show that this equivalence can be implemented as a flow generated by an s-dependent interaction which decays faster than any power law (in fact, almost exponentially). The flow is constructed using Hastings’ ‘quasi-adiabatic evolution’ technique, of which we give a proof extended to infinite-dimensional Hilbert spaces. In addition, we derive a general result about the locality properties of the effect of perturbations of the dynamics for quantum systems with a quasi-local structure and prove that the flow, which we call the spectral flow, connecting the gapped ground states in the same phase, satisfies a Lieb-Robinson bound. As a result, we obtain that, in the thermodynamic limit, the spectral flow converges to a co-cycle of automorphisms of the algebra of quasi-local observables of the infinite spin system. This proves that the ground state phase structure is preserved along the curve of models H(s), 0 ≤ s ≤ 1.  相似文献   

14.
An example of coding a source of quantum states with a finite frequency band W and finite exit power not exceeding ~(?W)W is given. The number of classical information bits that can be coded in the quantum states generated by such a source per unit time is C=W. Such a source is minimal in the sense that the filling factor for each of the orthogonal single-particle modes constituting N=WT-photon vector in time window 2T is equal to 1. This result can be treated as a quantum analogue of the Kotel’nikov theorem on sampling for classical signals  相似文献   

15.
In this paper we obtain violations of general bipartite Bell inequalities of order \({\frac{\sqrt{n}}{\log n}}\) with n inputs, n outputs and n-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a random choice of signs, all the elements involved in such violations: the coefficients of the Bell inequalities, POVMs measurements and quantum states. Analyzing this construction we find that, even though entanglement is necessary to obtain violation of Bell inequalities, the entropy of entanglement of the underlying state is essentially irrelevant in obtaining large violation. We also indicate why the maximally entangled state is a rather poor candidate in producing large violations with arbitrary coefficients. However, we also show that for Bell inequalities with positive coefficients (in particular, games) the maximally entangled state achieves the largest violation up to a logarithmic factor.  相似文献   

16.
Recently, Huang and Zhao (Int. J. Theor. Phys. 56, 678, 2017) proposed a new scheme for controlled remote state preparation of an arbitrary two-qubit state by using two sets of three-qubit GHZ states as the quantum channel. In the scheme, Alice and Bob choose four different kinds of two-qubit projective measurement bases to measure their local qubits, respectively. We demonstrate that two sets of four-qubit GHZ states can be used to realize the deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only two-qubit projective measurements.  相似文献   

17.
Quantum private comparison (QPC) aims to accomplish the equality comparison of the secrets from different users without disclosing their genuine contents by using the principles of quantum mechanics. In this paper, we summarize eight modes of quantum state preparation and transmission existing in current QPC protocols first. Then, by using the mode of scattered preparation and one-way convergent transmission, we construct a new multi-user quantum private comparison (MQPC) protocol with two-particle maximally entangled states, which can accomplish arbitrary pair’s comparison of equality among K users within one execution. Analysis turns out that its output correctness and its security against both the outside attack and the participant attack are guaranteed. The proposed MQPC protocol can be implemented with current technologies. It can be concluded that the mode of scattered preparation and one-way convergent transmission of quantum states is beneficial to designing the MQPC protocol which can accomplish arbitrary pair’s comparison of equality among K users within one execution.  相似文献   

18.
Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a “Bott clock” topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a (d + 1)-dimensional system in symmetry class s + 1. This relation gives a new vantage point on topological insulators and superconductors.  相似文献   

19.
We investigate quantum echo control and Bell state swapping for two atomic qubits (TAQs) coupling to two-mode vacuum cavity field (TMVCF) environment via two-photon resonance. We discuss the effect of initial entanglement factor ?? and relative coupling strength R=g1/g2 on quantum state fidelity of TAQs, and analyze the relation between three kinds of quantum entanglement(C(ρa),C(ρf),S(ρa)) and quantum state fidelity, then reveal physical essence of quantum echo of TAQs. It is shown that in the identical coupling case R=1, periodic quantum echo of TAQs with π cycle is always produced, and the value of fidelity can be controlled by choosing appropriate ?? and atom-filed interaction time. In the non-identical coupling case R≠1, quantum echoes with periods of π, 2π and 4π can be formed respectively by adjusting R. The characteristics of quantum echo results from the non-Markovianity of TMVCF environment, and then we propose Bell state swapping scheme between TAQs and two-mode cavity field.  相似文献   

20.
By employing the bipartite entangled state representation and the technique of integration within an ordered product of operators, the classical complex wavelet transform of a complex signal function can be recast to a matrix element of the squeezing-displacing operator U 2(μ, σ) between the mother wavelet vector 〈ψ| and the two-mode quantum state vector |f〉 to be transformed. 〈ψ|U 2(μ, σ)|f〉 can be considered as the spectrum for analyzing the two-mode quantum state |f〉. In this way, for some typical two-mode quantum states, such as two-mode coherent state and two-mode Fock state, we derive the complex wavelet transform spectrum and carry out the numerical calculation. This kind of wavelet-transform spectrum can be used to recognize quantum states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号