首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Occupational exposure to beryllium may cause Chronic Beryllium Disease (CBD), a lung disorder initiated by an electrostatic interaction with the MHC class II human leukocyte antigen (HLA). Molecular studies have found a significant correlation between the electrostatic potential at the HLA-DP surface and disease susceptibility. CBD can therefore be treated by chelation therapy. In this work, we studied the effect of two complexing agents, nitrilotriproprionic acid (NTP) and 4,5-dihydroxy-1,3-benzene disulphonate (Tiron), on the fractionation of beryllium in human serum analysed by graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

2.
Various Be-containing micro-particle suspensions were equilibrated with simulated lung fluid (SLF) to examine their dissolution behavior as well as the potential generation of nanoparticles. The motivation for this study was to explore the relationship between dissolution/particle generation behaviors of Be-containing materials relevant to Be-ore processing, and their epidemiologically indicated inhalation toxicities. Limited data suggest that BeO is associated with higher rates of beryllium sensitization (BS) and chronic beryllium disease (CBD) relative to the other five relevant materials studied: bertrandite-containing ore, beryl-containing ore, frit (a processing intermediate), Be(OH)2 (a processing intermediate), and silica (control). These materials were equilibrated with SLF at two pH values (4.5 and 7.2) to reflect inter- and intra-cellular environments in lung tissue. Concentrations of Be, Al, and Si in SLF increased linearly during the first 20 days of equilibration, and then rose slowly, or in some cases reached a maximum, and subsequently decreased. Relative to the other materials, BeO produced relatively low Be concentration in solution at pH 7.2; and relatively high Be concentration in solution at pH 4.5 during the first 20 days of equilibration. For both pH values, however, the Be concentration in SLF normalized to Be content of the material was lowest for BeO, demonstrating that BeO was distinct among the four other Be-containing materials in terms of its persistence as a source of Be to the SLF solution. Following 149 days of equilibration, the SLF solutions were fractionated using flow-field flow fractionation (FlFFF) with detection via ICP-MS. For all materials, nanoparticles (which were formed during equilibration) were dominantly distributed in the 10–100 nm size range. Notably, BeO produced the least nanoparticle-associated Be mass (other than silica) at both pH values. Furthermore, BeO produced the highest Be concentrations in the size range corresponding to < 3 kDa (determined via centrifugal ultrafiltration), indicating that in addition to persistence, the BeO produced the highest concentrations of truly dissolved (potentially ionic) Be relative to the other materials. Mass balance analysis showed reasonable sample recoveries during FFF fractionation (50–100%), whereas recoveries during ICP-MS (relative to acidified standards) were much lower (5–10%), likely due to inefficiencies in nebulizing and ionizing the nanoparticles.  相似文献   

3.
A molecular based understanding of beryllium chemistry in the context of biomolecules is necessary for gaining progress in prevention and treatment of chronic beryllium disease. One aspect that has hindered the theoretical progress has been the lack of a simple classical two-body potential for the aqueous beryllium ion (Be2+) to be used with biomolecular simulations. We provide new parameters for Be2+ that capture the structural and reactive properties of this small dication. Using classical molecular dynamics simulations, we show that these parameters reproduce the correct radial distribution function and coordination numbers for this cation in explicit aqueous solution when compared to published diffraction and NMR measurements. The geometrical parameters obtained using classical simulations are also in agreement with ab initio calculations. We successfully predict the vibrational modes of the tetra aqua Be2+ dication from ab initio calculations on solvated structures obtained from the simulations. The calculated vibrational modes show better agreement with experiments compared to any published work. This new potential also produces a well-established hydrogen bonding between the first and second solvation shells. More importantly, when the molecular dynamics (MD) and ab initio results are interpreted in concert, the dynamics and nature of interactions between the first and second shells capture the pivotal role they play on the reactivity of aqua-Be complexes.  相似文献   

4.
Possible routes of the protonation of the free beryllium malonate Be(Mal)2 and beryllium acetylacetonate Be(Acac)2 complexes were determined by the quantum-chemical method in the DFT approximation. The influence of the protonation on the electronic and molecular structures (geometry of the metallocycles, energies and compositions of the molecular orbitals, effective charges on the atoms, and site occupancies of atomic orbital overlapping) was studied. The change in the energy of the molecular orbitals was considered as a function of their localization on the protonated and nonprotonated ligands of the complexes. The addition of a proton to one of the oxygen atoms was shown to be most probable.  相似文献   

5.
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.  相似文献   

6.
The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.  相似文献   

7.
BackgroundCannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified.MethodsThus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors.ResultsThe results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.  相似文献   

8.

Background

A routine method for the quantification of beryllium in biological fluids is essential for the development of a chelation therapy for Chronic Beryllium Disease (CBD). We describe a procedure for the direct determination of beryllium in undigested micro quantities of human blood and serum using graphite furnace atomic absorption spectrometry. Blood and serum samples are prepared respectively by a simple 8-fold and 5-fold dilution with a Nash Reagent. Three experimental setups are compared: using no modifier, using magnesium nitrate and using palladium/citric acid as chemical modifiers.

Results

In serum, both modifiers did not improve the method sensitivity, the optimal pyrolysis and atomization temperatures are 1000°C and 2900°C, respectively. In blood, 6 μg of magnesium nitrate was found to improve the method sensitivity. The optimal pyrolysis and atomization temperatures were 800°C and 2800°C respectively.

Conclusion

In serum, the method detection limit was 2 ng l-1, the characteristic mass was 0.22 (± 0.07) pg and the accuracy ranged from 95 to 100%. In blood, the detection limit was 7 ng l-1, the characteristic mass was 0.20 (± 0.02) pg and the accuracy ranged from 99 to 101%.  相似文献   

9.
Over the last few years, much attention has been paid to phytocannabinoids derived from Cannabis for their therapeutic potential. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant compounds of the Cannabis sativa L. plant. Recently, novel phytocannabinoids, such as cannabidibutol (CBDB) and cannabidiphorol (CBDP), have been discovered. These new molecules exhibit the same terpenophenolic core of CBD and differ only for the length of the alkyl side chain. Roles of CBD homologs in physiological and pathological processes are emerging but the exact molecular mechanisms remain to be fully elucidated. Here, we investigated the biological effects of the newly discovered CBDB or CBDP, compared to the well-known natural and synthetic CBD (nat CBD and syn CBD) in human breast carcinoma cells that express CB receptors. In detail, our data demonstrated that the treatment of cells with the novel phytocannabinoids affects cell viability, increases the production of reactive oxygen species (ROS) and activates cellular pathways related to ROS signaling, as already demonstrated for natural CBD. Moreover, we observed that the biological activity is significantly increased upon combining CBD homologs with drugs that inhibit the activity of enzymes involved in the metabolism of endocannabinoids, such as the monoacylglycerol lipase (MAGL) inhibitor, or with drugs that induces the activation of cellular stress pathways, such as the phorbol ester 12-myristate 13-acetate (PMA).  相似文献   

10.
With a modified CNDO/2 molecular orbital approach, potential energy surfaces are computed for the attack of beryllium atom clusters simulating “smooth” (0001) and “corrugated” (1010) faces of beryllium metal. Several stable sites for chemisorption are found with binding energies of 40–55 kcal/mole, but penetration of the lattice appears possible at some points. Results are compared with the preliminary ab initio predictions of Bauschlicher, Liskow, Bender and Schaefer.  相似文献   

11.
Chemical bonding is at the heart of chemistry. Recent work on high bond orders between homonuclear transition metal atoms has led to ultrashort metal?metal (TM?TM) distances defined as dM?M<1.900 Å. The present work is a computational design and characterization of novel main group species containing ultrashort metal?metal distances (1.728–1.866 Å) between two beryllium atoms in different molecular environments, including a rhombic Be2X2 (X=C, N) core, a vertical Be?Be axis in a 3D molecular star, and a horizontal Be?Be axis supported by N‐heterocyclic carbene (NHC) ligands. The ultrashort Be?Be distances are achieved by affixing bridging atoms to attract the beryllium atoms electrostatically or covalently. Among these species are five global minima and one chemically viable diberyllium complex, which provide potential targets for experimental realization.  相似文献   

12.
Efficient storage of hydrogen is a bottleneck problem for hydrogen-based energy solutions. We demonstrate the feasibility of trapping a pair of hydrogen molecules in beryllium cluster cages. The systems are constructed by merging two smaller units with single molecules trapped, which are known to be stable in isolation. The resulting (H(2))(2)@Be(n) species can have hydrogen cores and beryllium shells of different shapes, and we report the calculated energy barriers for hydrogen exit from the cage. The relative stabilities are related to the molecular structure and charge distributions, and some initially counterintuitive features are explained. Aspects of the release of hydrogen from such structures, and of possible scaling up to larger extended systems of fused cages, are discussed in terms of hydrogen storage. The predicted capacity could potentially be sufficient for practical usage.  相似文献   

13.
A method for the simultaneous determination of aluminium and beryllium in mixtures by first-deravative synchronous solid-phase spectrofluorimetry has been developed. Aluminium and beryllium reacted with morin to give fluorescent complexes, which were fixed on a dextran-type resin. The fluoresnce of the resin, packed in a 1-mm silica cell, was measured directly with a solid-surface attachment. The constant wavelength difference chosen to optimize the determination was Deltalambda = lambda(em) = 75 nm. Aluminium was measured at lambda(em)lambda = 445/520 nm and beryllium at lambda(em)lambda(em) = 430/505 nm. The range of application is between 0.5 and 5.0 ng/ml for both aluminium and beryllium. The accuracy and precision of the method are reported. The method has been successfully applied to the determination of aluminium and beryllium in synthetic mixtures and natural waters.  相似文献   

14.
An investigation has been made into the separation of aluminium from beryllium by the ammonium benzoate method. It has been shown (a) that over a wide range of concentrations aluminium can be determined with a maximum error of 2 %, (b) that the beryllium can be estimated after the removal of the aluminium with an error of not more than 2 % if the proportion of alumina, to beryllia is not more than 1 : 1. If the proportion of alumina to beryllia is greater than 1 : 1 considerable inaccuracy in the beryllium determination will result due to the co-precipitation of the beryllium with the aluminium benzoate; (c) that a double precipitation is required to obtain a satisfactory separation of aluminium and beryllium, (d) that although KoLTOFF el al. reported partial precipitation of beryllium with ammonium benzoate, this does not occur if tlie PH is carefully controlled between 3.5–4.0, and (e) it has been confirmed that ammonium benzoate precipitates aluminium quantitatively at PH 3.5ú4.0 wlilst beryllium does not commence to precipitate until about PH 6.5.  相似文献   

15.
A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial enzymatic preparation (Celluclast) was developed. The CBD obtained, isolated from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30% glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBD-fluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very slow process.  相似文献   

16.
Coprecipitation first with magnesium hydroxide, next with tin(IV) hydroxide is developed for the determination of traces of beryllium in sea-water. To a 200-ml sample is added a sodium hydroxide solution to form magnesium hydroxide at pH 11.5, on which beryllium is quantitatively coprecipitated. The precipitate is separated by centrifugation and dissolved in 2 ml of 12 mol/l hydrochloric acid. The resulting solution (ca. 10 ml) is mixed with 2 mg of tin (IV) carrier and the pH is adjusted to 5.0 to collect the beryllium on tin (IV) hydroxide, leaving magnesium ions in the solution. The tin (IV) hydroxide is centrifuged, dissolved in 0.1 ml of 5 mol/l hydrobromic acid, and then diluted to 1 ml with water. Magnesium is so added as to be 500 g/ml for increasing the sensitivity about four times, and the beryllium in the solution is determined by graphite furnace atomic absorption spectrometry. The experiments with synthetic seawater samples showed that pg — g amounts of beryllium can be coprecipitated on the metal hydroxides and beryllium at the low ng/1 level can be determined with reasonable precision (RSD < 10%). The detection limit of the proposed method is 0.5 ng/l of beryllium in seawater.  相似文献   

17.
In cystic fibrosis (CF), the chronic neutrophilic inflammation of the airways results in proteolytic degradation of lung tissue early in the course of the disease. Inhalation of alpha 1-protease inhibitor (alpha 1-PI) may restore the protease-antiprotease imbalance and thus lead to less tissue damage. To monitor its impacts on bronchoalveolar lavage (BAL) fluid protein pattern (proteome) and on surfactant protein A (SP-A), eight young adults with CF inhaled 100 mg of alpha 1-PI twice daily over eight weeks. BAL fluids were obtained before and after inhalation. Total protein, the number and amount of proteins with a molecular mass < 20 kDa were reduced compared to pretreatment values. Degradation products of SP-A were shown by immunoblotting, being reduced after alpha 1-PI treatment. This pilot study demonstrates that inhalation of alpha 1-PI is associated with biochemical changes consistent with reduced proteolysis. The display of the BAL proteome by two-dimensional electrophoresis may be helpful to quantify the overall molecular changes associated with proteolytic or other lung injuries and offers the possibility to monitor directly therapeutic interventions.  相似文献   

18.
Cannabidiol (CBD) is a plant-derived compound with antioxidant and anti-inflammatory properties. Pulmonary hypertension (PH) is still an incurable disease. CBD has been suggested to ameliorate monocrotaline (MCT)-induced PH, including reduction in right ventricular systolic pressure (RVSP), a vasorelaxant effect on pulmonary arteries and a decrease in the white blood cell count. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on the parameters of oxidative stress and inflammation in the lungs of rats with MCT-induced PH. In MCT-induced PH, we found a decrease in total antioxidant capacity (TAC) and glutathione level (GSH), an increase in inflammatory parameters, e.g., tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and cluster of differentiation 68 (CD68), and the overexpression of cannabinoid receptors type 1 and 2 (CB1-Rs, CB2-Rs). Administration of CBD increased TAC and GSH concentrations, glutathione reductase (GSR) activity, and decreased CB1-Rs expression and levels of inflammatory mediators such as TNF-α, IL -1β, NF-κB, MCP-1 and CD68. In conclusion, CBD has antioxidant and anti-inflammatory effects in MCT-induced PH. CBD may act as an adjuvant therapy for PH, but further detailed preclinical and clinical studies are recommended to confirm our promising results.  相似文献   

19.
Ross WD  Sievers RE 《Talanta》1968,15(1):87-94
The electron capture detector has been used to measure ultra-trace quantities of beryllium separated as beryllium(II) trifluoroacetylacetonate by gas Chromatographic techniques. The lower limit of detectability is ca. 4 x 10(-13) g of beryllium. Calibration plots extend from 8 x 10(-13) to 4 x 10(-11) g of beryllium. Samples of beryllium in aqueous solution at four concentrations (1.18 x 10(-7), 1.18 x 10(-8), 2.95 x 10(-9), and 8.84 x 10(-10)g ml ) were analysed quantitatively by combining solvent extraction and gas chromatography. The distribution of beryllium during the extraction procedures was determined independently by use of radioactive beryllium-7, but the use of tracers is not required in the recommended procedure. Interference studies were made on cations and anions found in biological samples. At the concentrations used in the extraction procedure and the gas Chromatographic process, none of the fifteen ions studied interferes appreciably.  相似文献   

20.
A method is presented for the separation and radiochemical purification of microgram and tracer amounts of beryllium from solutions. It is a four-stage ion-exchange procedure consisting of (1) selective adsorption of the beryllium onto NaDAP resin and its elution with ammonium fluoride, (2) adsorption of the fluoroberyllate complex onto an anion-exchange column and elution of the beryllium with hydrochloric acid, (3) adsorption and selective elution of the beryllium on a cation-exchange column and (4) a pass through an anion-exchange column in concentrated hydrochloric acid. The method is quantitative and requires no carrier. Decontamination factors from most radionuclides tested were greater than 10,000. The method can be used to determine beryllium-10 in environmental materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号