首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The multi-angle laser light scattering (MALLS) detection method was combined with reversed-phase high-performance liquid chromatography to analyze multimerization of basic fibroblast growth factor (bFGF) formed by oxidation of bFGF with air or with 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB). This analysis provided the absolute molecular mass and the mean square radius for each eluted protein fraction of each slice of the chromatogram. It was shown that depending on the oxidation conditions, bFGF forms different multimetric forms, from dimers to hexamers. It was found that these multimers have varied conformations of the same molecular mass, but different structure. Molecular mass and size analyses provided molecular conformation of the aggregates; the results indicated the formation of rod-like rigid structures. The MALLS analysis confirmed that, during oxidation, each bFGF monomer bound sequentially to form the extended multimer. The proposed scheme of bFGF oxidation with DTNB revealed that the difference in the aggregate structural forms was probably due either to the presence of covalently bound residues of nitrobenzoic acid in the products of oxidation, or to the participation of sulfhydryl groups in disulfide bond formation.  相似文献   

2.
Two new proteins of approximately 70 amino acids in length, corresponding to an unnaturally-linked N- and C-helix of the ectodomain of the gp41 protein from the human immunodeficiency virus (HIV) type 1, were designed and characterized. A designed tripeptide links the C-terminus of the C-helix with the N-terminus of the N-helix in a circular permutation so that the C-helix precedes the N-helix in sequence. In addition to the artificial peptide linkage, the C-helix is truncated at its N-terminus to expose a region of the N-helix known as the “Trp-Trp-Ile” binding pocket. Sedimentation, crystallographic, and nuclear magnetic resonance studies confirmed that the protein had the desired trimeric structure with an unoccupied binding site. Spectroscopic and centrifugation studies demonstrated that the engineered protein had ligand binding characteristics similar to previously reported constructs. Unlike previous constructs which expose additional, shallow, non-conserved, and undesired binding pockets, only the single deep and conserved Trp-Trp-Ile pocket is exposed in the proteins of this study. This engineered version of gp41 protein will be potentially useful in research programs aimed at discovery of new drugs for therapy of HIV-infection in humans.  相似文献   

3.
A selective MEKC method was developed for the analysis of didanosine in bulk samples. Successful separation of didanosine from 13 of its potential impurities, derived from the various synthetic preparation procedures, was achieved. As CZE gave poor separation selectivity, MEKC was preferable. The use of EKC allowed achievement of the separation in a significantly shorter time than conventional HPLC. An anionic long-chain surfactant, lithium dodecyl sulfate (LiDS), was used as the pseudostationary phase and sodium tetraborate buffer as the aqueous phase. In order to obtain the optimal conditions and to test the method robustness, a central composite response surface modeling experiment was performed. The optimized electrophoretic conditions include the use of an uncoated fused-silica capillary with a total length of 40 cm and an ID of 50 microm, a BGE containing 40 mM sodium tetraborate and 110 mM LiDS at pH 8.0, an applied voltage of 18.0 kV, and the capillary temperature maintained at 15 degrees C. The method was found to be robust. The parameters for validation such as linearity, precision, and sensitivity are also reported. Three commercial bulk samples were analyzed with this system.  相似文献   

4.
5.
The quantification of the HIV integrase inhibitor raltegravir in blood plasma is described using solid phase extraction (SPE) coupled with an accurate high-performance liquid chromatography assay with ultraviolet (UV) detection. The method was validated over the range of 20-10,000 ng/mL using simple sample preparation and chromatography. The SPE method was optimized to be selective and highly efficient. The buffer’s ionic strength and pH were optimized for retaining RAL and the internal standard on the column, the percentage of methanol was optimized in the cleaning step to remove unwanted plasma contaminants, and the type and amount of acid was optimized for complete elution of the compounds. This method has no interference with other potentially co-administered antiretrovirals or common drugs. Average recoveries for the extraction method were consistently high: 90% for raltegravir and 90% for the internal standard diazepam. This method was found to be accurate and precise. Within day (n = 6) and between day (n = 18) accuracies ranged from 97.5 to 104.4%. Within-day (n = 6) and between-day (n = 18) precision ranged from 1.4 to 3.8%, and from 2.4 to 7.9%, respectively. This is the first published method to use simple UV technology and reliable SPE extraction methodology for the quantification of raltegravir in human plasma. This method can be easily implemented in most bioanalytical laboratories.  相似文献   

6.
7.
A condensation nucleation light scattering detector (CNLSD) was adapted for use as a detector for supercritical fluid chromatography. The performance of the CNLSD was evaluated and compared to evaporative light-scattering detector (ELSD) using a well-defined equimass mixture of uniform poly(ethylene glycol) oligomers and a certified reference material of poly(ethylene glycol) 1000. The CNLSD was able to detect a 10 times less concentrated solution of uniform oligomers compared to the ELSD. The quantitativeness of CNLSD was high enough to obtain the molecular mass distribution of poly(ethylene glycol) 1000 without any calibrations; on the other hand, the original data measured by ELSD was about 4% smaller than the certified value of poly(ethylene glycol) 1000. The CNLSD was suitable for supercritical fluid chromatography as a mass concentration detector.  相似文献   

8.
It was the aim of this study to compare the performance of displacement chromatography with gradient elution chromatography both applied as the cation-exchange separation step for a proteome analysis in a bottom-up approach using multidimensional chromatography for the separation of tryptic peptides prior to their mass spectrometric analysis. The tryptic digest of the human Cohn fraction IV-4 served as a sample. For both chromatography modes commonly used operating parameters were chosen thus ensuring optimal separation results of equal sample amounts for each mode. All resulting fractions were analyzed with an HPLC-chip–LC–MS system. The eluate of the HPLC-chip column was ionized by electrospray ionization (ESI) and analyzed with an ion-trap mass spectrometer. For guaranteeing high confidence concerning the identity of the peptides, the mass spectrometric data were processed by different bioinformatic tools applying stringent criteria. By the displacement approach the total amount of identified proteins (78) was significantly higher than in the gradient mode (58). The results showed that displacement chromatography is a well suited alternative in comparison to gradient elution separation for analysis of proteomes via the bottom-up approach applying multidimensional chromatography, especially in those cases when larger quantities of proteins are available.  相似文献   

9.
Summary A specific and sensitive direct-injection high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry (HPLC-APCI-MS-MS) method has been developed for the rapid identification and quantitative determination of citalopram, fluvoxamine, and paroxetine in human plasma. After dilution with 0.1% formic acid, plasma samples were injected into the LC-MS-MS system. Proteins and other large biomolecules were removed during an on-line sample cleanup step. The inter- and intra-assay coefficients of variation for all compounds were <11%. The total analysis time was 6 min per sample. The proposed method permits direct analysis of plasma samples without time-consuming sample preparation.  相似文献   

10.
A new method for the simultaneous determination of D- and L-lactic acid in human plasma has been developed using high-performance liquid chromatography (HPLC) with fluorescence detection. This method is based on the reaction of lactic acid with (2S)-2-amino-3-methyl-1-[4-(7-nitro-benzo-2,1,3-oxadiazol-4-yl)-piperazin-1-yl]-butan-1-one (NBD-PZ-Val) in the presence of O-(7-azobenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and N-ethyldiisopropylamine (DIEA) to produce fluorescent diastereomeric derivatives that were easily monitored fluorimetrically at λ(ex)=490 nm and λ(em)=532 nm. The separation was achieved by use of a C18 analytical column (Synergy Hydro 150 mm x 3 mm i.d., 4 μm). The calibration curve was linear over the on-column concentration range of 10-200 μmol/L for D-lactic acid and 0.5-4.0 mmol/L for L-lactic acid. The sensitivity was good with a limit of detection of 5.24 μmol/L for D-lactic acid and 0.15 mmol/L for L-lactic acid. The analytical method was successfully applied to human plasma samples from normal healthy subjects.  相似文献   

11.
We report herein an extraction method for the analysis of perfluorinated compounds in human serum based on magnetic core–mesoporous shell microspheres with decyl-perfluorinated interior pore-walls (Fe3O4@mSiO2-F17). Thanks to the unique properties of the Fe3O4@mSiO2-F17 microspheres, macromolecules like proteins could be easily excluded from the mesoporous channels due to size exclusion effect, and perfluorinated compounds (PFCs) in protein-rich biosamples such as serum could thus be directly extracted with the fluorocarbon modified on the channel wall without any other pretreatment procedure. The PFCs adsorbed Fe3O4@mSiO2-F17 microspheres could then be simply and rapidly isolated by using a magnet, followed by being identified and quantified by LC–MS/MS (high-performance liquid chromatography coupled to tandem mass spectrometry). Five perfluorinatedcarboxylic acids (C6, C8–C11) and perfluorooctane sulfonate (PFOS) were selected as model analytes. In order to achieve the best extraction efficiency, some important factors including the amount of Fe3O4@mSiO2-F17 microspheres added, adsorption time, type of elution solvent, eluting solvent volume and elution time were investigated. The ranges of the LOD were 0.02–0.05 ng mL−1 for the six PFCs. The recovery of the optimized method varies from 83.13% to 92.42% for human serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号