首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

2.
This paper describes a new method for the dispersing and surface-functionalization of metal oxide magnetic nanoparticles (10 nm) with poly(allylamine) (PAA). In this approach, Fe3O4 nanoparticles, prepared with diethanolamine (DEA) as the surface capping agent in diethyleneglycol (DEG) and methanol, are ligand exchanged with PAA. This method allows the dispersing of magnetic nanoparticles into individual or small clusters of 2–5 nanoparticles in aqueous solutions. The resulting nanoparticles are water soluble and stable for months. The PAA stabilized Fe3O4 nanoparticles are characterized by TEM, TGA, and FT-IR. The PAA-coated Fe3O4 nanoparticles will allow further chemical tailoring and engineering of their surfaces for biomedical applications.  相似文献   

3.
Fe3O4-based heterostructures, including Fe3O4/MgO/Fe3O4, Fe3O4/MgO/Si and Fe3O4/SiO2/Si, were fabricated by magnetron sputtering to investigate the perpendicular-to-plane magneto-transport properties. In the Fe3O4/MgO/Fe3O4 and Fe3O4/MgO/Si heterostructures, the typical magneto-transport properties of single Fe3O4 films, such as negative magnetoresistance (MR) and extreme values of MR−T curves at 120 K, were observed, suggesting that the spin polarization of conducting electrons conserves through MgO barrier. MR in the Fe3O4/MgO/Fe3O4 heterostructure is larger than that in the Fe3O4/MgO/Si heterostructure, because the spin of electrons is disturbed in the depletion layer of Si and the SiO2 layer introduced by Fe3O4/MgO growth. The Fe3O4/SiO2/Si heterostructure has a positive MR of 2% at 120 K, which may originate from the scattering of conducting electrons in amorphous SiO2 and the spin polarization reversal at the Fe3O4/SiO2 interface.  相似文献   

4.
《Current Applied Physics》2010,10(3):828-833
Novel magnetic Fe3O4–chitosan nanoparticles were synthesized via photochemical method in an emulsifier-free aqueous system at room temperature for the first time. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results showed that the Fe3O4–chitosan nanoparticles were in regular shape with a mean diameter of 41 nm, whereas the average size in aqueous solution measured by photocorrelation spectroscopy (PCS) was 64 nm, which indicated that the nanoparticles had water-swelling properties. X-ray diffraction (XRD) patterns indicated that the Fe3O4 nanoparticles were pure Fe3O4 with a spinel structure, and the irradiation under UV light did not result in a phase change. The Fe3O4–chitosan nanoparticles were also characterized by Fourier transform infrared (FTIR) spectra, thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). Magnetic measurement revealed that the saturated magnetization (Ms) of the Fe3O4–chitosan nanoparticles reached 48.6 emu/g and the nanoparticles showed the characteristics of superparamagnetism. The stability test showed these novel nanoparticles had high magnetic stability. The PCS and TGA results indicated that the size and chitosan content of Fe3O4–chitosan nanoparticles formed was pH- and chitosan/Fe3O4 ratio-dependent, which could be used to synthesize magnetic Fe3O4–chitosan nanoparticles with different size to meet the requirements of different applications.  相似文献   

5.
We synthesized Fe3O4@C@Ag nanocomposites through a combination of solvothermal, hydrothermal, and chemical redox reactions. Characterization of the resulting samples by X-ray diffraction, Fourier-transform infrared spectroscopy, field-emission scanning and transmission electron microscopy, and magnetic measurement is reported. Compared to Fe3O4@Ag nanocomposites, the Fe3O4@C@Ag nanocomposites showed enhanced antibacterial activity. The Fe3O4@C@Ag nanocomposites were able to almost entirely prevent growth of Escherichia coli when the concentration of Ag nanoparticles was 10 μg/mL. Antibacterial activity of the Fe3O4@C@Ag nanocomposites was maintained for more than 40 h at 37 °C. The intermediate carbon layer not only protects magnetic core, but also improves the dispersion and antibacterial activity of the silver nanoparticles. The magnetic core can be used to control the specific location of the antibacterial agent (via external magnetic field) and to recycle the residual silver nanoparticles. The Fe3O4@C@Ag nanocomposites will have potential uses in many fields as catalysts, absorbents, and bifunctional magnetic-optical materials.  相似文献   

6.
The effect of three metal oxides on the magnetic properties of polymer bonded magnets (PBMs) was studied. The three PBMs, using polycarbonate (PC) as binder and 5 wt% of Fe3O4, Fe2O3, or CuO nanoparticles, were prepared by melt extrusion in a twin screw extruder followed by compression molding. Transmission electron microscopic (TEM) images showed a better dispersion for the PC/Fe3O4 nanocomposite compared with that of the other nanocomposites. The dynamic intersection frequency (ωc), which is related to the crossing of the G′ and G curves, showed that there was more homogeneity in the PC/Fe3O4 and PC/Fe2O3 nanocomposites. The curves of saturation magnetization for the three nanocomposites showed that there was a relationship between the magnetic properties and the homogeneity of the nanoparticles studied by rheometry. Because the magnetic strength of PC/Fe3O4 was greater than that of the other nanocomposites, it was concluded that not only the intrinsic magnetic property of the filler was an important factor to increase the magnetic property, but also the homogeneity of the filler within the matrix had an important role.  相似文献   

7.
The influence of the oleic acid surface coating on Fe3O4 and NiFe2O4 nanoparticles on their magnetic and calorimetric characterization was investigated. Fe3O4 nanoparticles (particle sizes of 15-20 and 20-30 nm) and NiFe2O4 nanoparticles (particle sizes of 20-30 nm) were dispersed in oleic acid. The surface coating resulted in a decrease in the dipole-dipole interaction between the particles, which in turn affected the coercivity and heat dissipation of the nanoparticles. The coercivity of the oleic-acid-coated nanoparticles was found to be lower than that of the uncoated nanoparticles. The temperature rise in the oleic-acid-coated nanoparticles was greater than that of the uncoated nanoparticles; this temperature rise was associated with the relaxation losses. The viscosity dependence on the self-heating temperature of Fe3O4 nanoparticles (15-20 and 20-30 nm) under an ac magnetic field was measured. The temperature rise for both the Fe3O4 nanoparticles (15-20 and 20-30 nm) exhibited a strong dependence on viscosity at each magnetic field frequency, and the contribution of Brownian relaxation loss to the temperature rise was revealed. Moreover, an in vitro cytotoxicity test of Fe3O4 and NiFe2O4 was performed using human cervical carcinoma cells (HeLa), and the cytotoxicity of NiFe2O4 nanoparticles was compared to that of Fe3O4 nanoparticles.  相似文献   

8.
In this paper, a novel approach was successfully developed for advanced catalyst Ag-deposited silica-coated Fe3O4 magnetic nanoparticles, which possess a silica coated magnetic core and growth active silver nanoparticles on the outer shell using n-butylamine as the reductant of AgNO3 in ethanol. The as-synthesized nanoparticles have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectra (FT-IR), vibration sample magnetometer (VSM), and have been exploited as a solid phase catalyst for the reduction of p-nitrophenol in the presence of NaBH4 by UV-vis spectrophotometry. The obtained products exhibited monodisperse and bifunctional with high magnetization and excellent catalytic activity towards p-nitrophenol reduction. As a result, the as-obtained nanoparticles showed high performance in catalytic reduction of p-nitrophenol to p-aminophenol with conversion of 95% within 14 min in the presence of an excess amount of NaBH4, convenient magnetic separability, as well as remained activity after recycled more than 6 times. The Fe3O4@SiO2-Ag functional nanostructure could hold great promise for various catalytic reactions.  相似文献   

9.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

10.
A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe3O4/KCTS) as support. The magnetic Fe3O4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe3O4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe3O4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.  相似文献   

11.
The adsorption of alginate (Alg) onto the surface of in water dispersed Fe3O4 nanoparticles and zeta potential of alginate-coated Fe3O4 nanoparticles have been investigated to optimize the colloidal stability of Alg-coated Fe3O4 nanoparticles. The adsorption amount of Alg increased with the decrease of adsorption pH. The zeta potential of Fe3O4 nanoparticles shifted to a lower value after adsorption of Alg. The lower adsorption pH was the lower zeta potential of Fe3O4 nanoparticles became. The Alg-coated Fe3O4 nanoparticles were found to be stabilized by steric and electrostatic repulsions. Those prepared at pH 6 were not stable around pH 5, and those prepared at pH 4 became unstable at pH below 3.5. Alg of Mw 45 kDa was a little bit more adsorbed onto nanoparticles surface than that of Mw 24 kDa. An average Fe3O4 core size of 9.3 ± 1.7 nm was found by transmission electronic microscopy. An average hydrodynamic diameter of 30-150 nm was measured by photon correlation spectroscopy. However, an average core size of 10 nm and an average hydrodynamic diameter of 38 nm were estimated from the magnetization curve of the concentrated magnetic fluids (MFs). The maximum available saturation magnetization of MFs was about 3.5 kA/m.  相似文献   

12.
不使用任何模板一步制得空心Fe3O4纳米颗粒,然后将海藻酸钠嫁接在氨基化的空心Fe3O4表面,再利用海藻酸盐与钙离子的作用,在空心Fe3O4表面形成一个凝胶化层,制得海藻酸盐凝胶化的空心Fe3O4纳米颗粒,粒径约为400~500 nm.采用TEM、XRD、XPS、VSM等手段对纳米微球进行表征.VSM表征结果表明在室温下样品磁性材料为超顺磁性.改性Fe3O4纳米颗粒成功地用于柔红霉素的载负和缓释,最大载负率和载药量分别为28.4%和14.2%.缓释结果表明,海藻酸盐凝胶化层的存在,能更有效控制柔红霉素缓慢地释放.  相似文献   

13.
Laser ablation of iron in an organic solvent (pentane, hexane, or decane) was performed using an air-tight cell to produce iron carbide nanoparticles. M?ssbauer spectra of the nanoparticles were obtained at room temperature. They revealed that the nanoparticles consisted of two paramagnetic components and magnetic components. The two paramagnetic components were a high-spin Fe(II) species and an amorphous iron carbide containing a large amount of carbon. Whereas the magnetic components measured at room temperature exhibited superparamagnetism, those measured at low temperature were fitted by a combination of four sextets, which were assigned to Fe7 C 3. The Fe7 C 3 yield was higher in higher molecular weight solvents. Transmission electron microscopy (TEM) images of the samples showed that the nanoparticles were spherical with diameters in the range 10–100?nm.  相似文献   

14.
Cui  Huahua  Wu  Shanshan  Wang  Lei  Sun  Xiangzhong  Zhang  He  Deng  Mengyu  Tian  Yanqing 《Journal of fluorescence》2022,32(5):1621-1627

In this study, we aimed to synthesize magnetically well-dispersed nanosensors for detecting dissolved oxygen (DO) in water, and explore their biological applications. Firstly, we synthesized two kinds of magnetic nanoparticle with average sizes of approximately 82 nm by one-step emulsion polymerization: polystyrene magnetic nanoparticles (Fe3O4@Os1-PS) and polymethylmethacrylate magnetic nanoparticles (Fe3O4@Os1-PMMA). Both types of nanoparticle present good dispersibility and fluorescence stability. The nanoparticles could be used as oxygen sensors that exhibited a high DO-sensitivity response in the range 0-39.30 mg/L, with a strong linear relationship. The nanoparticles have good magnetic properties, and so they could be recycled by magnet for further use. Recovered Fe3O4@Os1-PS still presented high stability after continued use in oxygen sensing for one month. Furthermore, Fe3O4@Os1-PS was employed for detecting the bacterial oxygen consumption of Escherichia coli (E-coli) to monitor the metabolism of bacteria. The results show that Fe3O4@Os1-PS provide high biocompatibility and non-toxicity. Polystyrene magnetic nanoparticles therefore present significant potential for application in biological oxygen sensing.

  相似文献   

15.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

16.
In this study, the effect of silane treatment of Fe3O4 on the magnetic and wear properties of Fe3O4/epoxy nanocomposites was investigated. Fe3O4 nanopowders were prepared by coprecipitation of iron(II) chloride tetrahydrate with iron(III) chloride hexahydrate, and the surfaces of Fe3O4 were modified with 3-aminopropyltriethoxysilane. The magnetic properties of the powders were measured on unmodified and surface-modified Fe3O4/epoxy nanocomposites using SQUID magnetometer. Wear tests were performed on unmodified and surface-modified Fe3O4/epoxy nanocomposites under the same conditions (sliding speed: 0.18 m/s, load: 20 N).The results showed that the saturation magnetization (Ms) of surface-modified Fe3O4/epoxy nanocomposites was approximately 110% greater than that of unmodified Fe3O4/epoxy nanocomposites. This showed that the specific wear rate of surface-modified Fe3O4/epoxy nanocomposites was lower than that of unmodified Fe3O4/epoxy nanocomposites. The decrease in wear rate and the increase in magnetic properties of surface-modified Fe3O4/epoxy nanocomposites occurred due to the improved dispersion of Fe3O4 into the epoxy matrix.  相似文献   

17.
We propose an exploding wire technique based facile approach to prepare Fe2O3 nanoparticles in ambient conditions. TG-DSC analysis of the prepared precursor (Fe(OH)3) nanoparticles were done. The phase, lattice parameter and the average crystallite size were evaluated through X-ray diffraction analysis. The morphology of prepared nanoparticles was studied by scanning electron microscopy and Transmission electron microscope. The functional group formation of Fe2O3 nanoparticles and intrinsic stretching vibration bands of Fe–O were estimated through FTIR analysis. The direct band gap of Fe2O3 nanoparticles occurring in conjunction with indirect band gaps was established via Tauc plot. The magnetic parameters were studied through Mössbauer spectroscopy, ESR, M-H and M-T plot analysis. The attributes of dielectric behaviour like dielectric constant (ε′), loss tangent (tan δ), dielectric loss (ε″) and alternating current (AC) conductivity (σAC) were measured at various temperatures in the frequency range of 10 Hz-106 KHz.  相似文献   

18.
Epitaxial Fe3O4(0 0 1) thin films (with a thickness in the range of 10-20 nm) grown on MgO substrates were characterized using low-energy electron diffraction (LEED), conversion electron Mössbauer spectroscopy (CEMS) and investigated using Rutherford backscattering spectrometry (RBS), channeling (RBS-C) experiments and X-ray reflectometry (XRR). The Mg out-diffusion from the MgO substrate into the film was observed for the directly-deposited Fe3O4/MgO(0 0 1) films. For the Fe3O4/Fe/MgO(0 0 1) films, the Mg diffusion was prevented by the Fe layer and the surface layer is always a pure Fe3O4 layer. Annealing and ion beam mixing induced a very large interface zone having a spinel and/or wustite formula in the Fe3O4-on-Fe film system.  相似文献   

19.
In this research, a sonochemical activation-assisted biosynthesis of Au/Fe3O4 nanoparticles is proposed. The proposed synthesis methodology incorporates the use of Piper auritum (an endemic plant) as reducing agent and in a complementary way, an ultrasonication process to promote the synthesis of the plasmonic/magnetic nanoparticles (Au/Fe3O4). The synergic effect of the green and sonochemical synthesis favors the well-dispersion of precursor salts and the subsequent growth of the Au/Fe3O4 nanoparticles.The hybrid green/sonochemical process generates an economical, ecological and simplified alternative to synthesizing Au/Fe3O4 nanoparticles whit enhanced catalytic activity, pronounced magnetic properties. The morphological, chemical and structural characterization was carried out by high- resolution Scanning electron microscopy (HR-SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray diffraction (XRD), respectively. Ultraviolet–visible (UV–vis) and X-ray photoelectron (XPS) spectroscopy confirm the Au/Fe3O4 nanoparticles obtention. The magnetic properties were evaluated by a vibrating sample magnetometer (VSM). Superparamagnetic behavior, of the Au/ Fe3O4 nanoparticles was observed (Ms = 51 emu/g and Hc = 30 Oe at 300 K). Finally, the catalytic activity was evaluated by sonocatalytic degradation of methyl orange (MO). In this stage, it was possible to achieve a removal percentage of 91.2% at 15 min of the sonocatalytic process (160 W/42 kHz). The initial concentration of the MO was 20 mg L−1, and the Fe3O4-Au dosage was 0.075 gL−1. The MO degradation process was described mathematically by four kinetic adsorption models: Pseudo-first order model, Pseudo-second order model, Elovich and intraparticle diffusion model.  相似文献   

20.
Powders of Fe–Mg–O nanocomposite particles have been grown using a novel chemical vapor synthesis approach that employs the decomposition of a metalorganic precursor inside the metal combustion flame. After annealing in controlled gas atmospheres composition distribution functions, structure and phase stability of the obtained magnesiowüstite nanoparticles are measured with a combination of techniques such as inductively coupled plasma‐optical emission spectroscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, and scanning and transmission electron microscopy. Complementary Mössbauer spectroscopy measurements reveal that depending on Fe loading and temperature of annealing either metastable and superparamagnetic solid solutions of Fe3+ ions in periclase (MgO) or phase separated mixtures of MgO and ferrimagnetic magnesioferrite (MgFe2O4) nanoparticles can be obtained. The described combustion technique represents a novel concept for the production of mixed metal oxide nanoparticles. Adressing the impact of selected annealing protocols, this study underlines the great potential of vapor phase grown non‐equilibrium solids, where thermal processing provides means to trigger phase separation and, concomitantly, the emergence of new magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号