首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
采用板-板式电极结构在大气压氮气中成功地获得了具有工业应用前景的大面积均匀介质阻挡放电等离子体。利用发射光谱技术测量了N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+g 0-0 391.4 nm)的发射光谱,并研究了应用电压和驱动频率对N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+g 0-0 391.4 nm)发射光谱强度的影响。结果表明,当应用电压小于6 kV时,N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+ g0-0 391.4 nm)的发射光谱强度随应用电压增大变化较小,进一步升高应用电压时,等离子体发射光谱强度陡然增强。本文还讨论了激发态N+2(B2Σ+u)离子在纯N2和He+N2混合气体中介质阻挡大气压均匀介质阻挡放电下的主要产生机制。  相似文献   

2.
多相脉冲放电体系中羟基自由基的光谱诊断   总被引:1,自引:0,他引:1  
采用多针-板电极形式的气液混合脉冲放电系统,在其中加入玻璃珠负载的TiO2膜光催化剂形成了一个气-液-固多相脉冲放电体系,研究中利用脉冲放电过程中产生的紫外光效应诱导其中的TiO2的光催化作用,通过对放电体系中羟基自由基(·OH)的光谱诊断考察TiO2光催化作用与脉冲流光放电的协同作用效果。结果表明,本脉冲放电体系中产生的·OH在306 nm(A2Σ+→X2Π跃迁)、309 nm(A2Σ+(ν′=0)→X2Π(ν″=0)跃迁)和313 nm(A2Σ+(ν′=1)→X2Π(ν″=1)跃迁)处均产生发射光谱,其中313 nm处的·OH的光谱强度最强;脉冲放电协同TiO2光催化作用系统中·OH的发射光谱强度较单独的脉冲放电体系强,同时,条件实验(不同鼓气种类和水溶液初始pH值)的研究结果表明用氩气作为鼓气源时,多相反应体系中313 nm处·OH的发射光谱强度比以空气和氧气作为鼓气源时的强度高,酸性溶液中313 nm处·OH的发射光谱强度比中性和碱性溶液中高。  相似文献   

3.
利用发射光谱法对金属管内形成的稳定氩氮直流辉光等离子体进行了诊断。通过对等离子体发射光谱谱线的研究确定了等离子体中的活性粒子成分;根据氩原子的玻尔兹曼曲线斜率法计算了等离子体中的电子激发温度;采用氮分子第二正带系跃迁(C3ΠuB3Πg)的发射谱线计算了等离子体中的氮分子振动温度;研究了电子激发温度和氮分子振动温度随压强的变化特征。研究结果表明,在20 Pa下产生的Ar60%+N240%直流辉光等离子体中,活性成分主要是Ar原子、Ar离子、N2的第二正带系跃迁(C3ΠuB3Πg)和N+2的第一负带系跃迁(B2Π+uX2Σ+g);电子激发温度约为(15 270±250)K;氮分子(C3Πu)振动温度约为(3 290±100)K;随着压强的增加电子激发温度、分子振动温度逐渐降低。文章的研究结果对细长金属管内表面改性研究具有重要的意义。  相似文献   

4.
采用蒙特卡罗方法,对以CH4/H2为源料气体的电子助进化学气相沉积(EACVD)金刚石中的氢原子(Hα, Hβ, Hγ)、碳原子C(2p3s2p2∶λ=165.7 nm)以及CH(A2Δ→X2Πλ=420~440 nm)的光发射过程进行了模拟,气体温度随空间的变化采用温度梯度变化,研究了不同反应室气压及衬底温度下的光发射谱特性。结果表明,不同衬底温度下各谱线强度均随气压的增大先增大后减小; 当气压较低时,谱线强度随衬底温度的增大而减少,而气压较高时,谱线强度随衬底温度的增大而增大。  相似文献   

5.
在U型管声致发光装置的基础上建立了一套新型的声致发光装置—直管圆锥泡声致发光装置,详细地介绍了此装置的结构和实验操作步骤,利用此装置得到了超强的发光脉冲。测量得到了乙二醇溶液中圆锥泡声致发光的发光脉冲,结果显示脉冲半宽度大约为80 μs左右,远远高于其他声致发光形式所产生的脉冲宽度,这主要是由于圆锥泡可以获得远远高于超声声致发光中气泡所能得到的能量。发光光谱为一从紫外光至可见光波长范围的连续谱,上面叠加C2d3Πgd3Πu的跃迁形成的五个序列谱带,分别对应于Δν=-2,Δν=-1,Δν=0,Δν=1和Δν=2;同时叠加有CN的B2Σ+→X 2Σ+跃迁形成的3个序列谱带和CH的A2Δ→X 2Π 跃迁谱带。特别是实验中测量得到了斯旺带光谱序列谱带清晰的振动结构。最后,通过与理论模拟得到的斯旺带光谱相对强度的比较,估算得到了C2分子的振动温度大约为(4 200±200) K。  相似文献   

6.
在氩气和空气混合气体介质阻挡放电中,首次发现了团簇六边形斑图。运用发射光谱法,研究了此斑图中单个团簇的三种等离子体参数:分子振动温度、分子转动温度以及电子的平均能量随空气含量的变化。实验通过测量氮分子光谱并采用氮分子第二正带系(C3ΠuB 3Πg)计算了振动温度;同时采集氮分子离子(N+2)的第一负带系(B 2Σ+uX 2Σ+g)计算转动温度。利用氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度之比,作为研究电子平均能量的变化的依据。结果显示,当混合气体中空气含量从16%逐渐增大到24%时,三种等离子体参数均逐渐增大。  相似文献   

7.
空气介质阻挡放电不同放电模式的光谱特性   总被引:1,自引:0,他引:1  
采用光谱方法,研究了空气介质阻挡放电中流光向类辉光转变时电子能量的变化。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,测量了氮分子(C3Πu)的振动温度。通过考察氮分子离子391.4 nm谱线强度与氮分子337.1 nm谱线强度之比,研究了电子平均能量的变化。结果表明,流光向类辉光转变时,氮分子(C3Πu)的振动温度激增,氮分子离子391.4 nm相对谱线强度突增,表明类辉光放电模式中电子能量比流光放电模式中电子能量高很多。实验还发现,气隙间距不同,这两种放电模式转变所对应的转变气压不同,但转变气压与气隙间距的乘积值保持不变。  相似文献   

8.
设计了水电极放电装置,在空气/氩气混合气体中实现了大面积沿面放电。采用发射光谱法,对分子振动温度、电子平均能量和电子激发温度等随气压的变化进行了研究。根据氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算出氮分子的振动温度;使用Ar 763.51 nm(2P6→1S5)和772.42 nm(2P2→1S3)的两条发射谱线的强度比得到电子激发温度;通过氮分子离子391.4 nm和氮分子337.1 nm两条发射谱线的相对强度之比得出了电子的平均能量的变化。实验研究了发射光谱随气压的变化,发现其强度随着气压的增加而增强,且其整个轮廓和谱线强度之比也发生变化。随着气压从0.75×105Pa升高到1×105Pa,分子振动温度、电子激发温度和电子能量均呈下降趋势。  相似文献   

9.
利用介质阻挡沿面放电装置,在低气压空气中实现了辉光放电模式。利用光电倍增管对放电发光信号进行检测,发现外加电压每半周期出现一个发光脉冲,并且正负半周期的光脉冲是不对称的。利用Photoshop软件处理放电的照片,研究发现平行于高压电极不同位置的发光强度基本相同,然而距离高压电极越远,发光强度减小。放电中总电场由外加电场和电介质积累的壁电荷电场共同决定,确定该电场具有重要意义。通过分析放电的发射光谱中N+2(B 2Σ+uX 2Σ+g)谱线391.4 nm和N2的第二正带系(C 3ΠuB 3Πg)谱线337.1 nm的比值,可以定性地说明电场的分布。研究发现电场在高压电极附近较大而远离高压电极处较小。这些研究结果对沿面放电的数值模拟和工业应用具有重要的价值。  相似文献   

10.
压强对空气/氩气介质阻挡放电中等离子体温度的影响   总被引:1,自引:0,他引:1  
使用水电极介质阻挡放电装置,在氩气和空气的混合气体放电中,利用发射光谱法,研究了电子激发温度和分子振动温度随气体压强的变化关系。通过氩原子763.51 nm(2P6→1S5)和772.42 nm(2P6→1S3)两条谱线强度比法计算电子激发温度;通过氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算氮分子的振动温度;对氮分子离子391.4 nm和激发态的氮分子337.1 nm两条发射谱线的相对强度进行了测量,以进一步研究电子能量的变化。实验表明,随着压强从20 kPa增大到60 kPa, 电子激发温度减小,分子振动温度减小, 氮分子离子谱线与激发态的氮分子谱线强度之比减小。  相似文献   

11.
氩气含量对空气介质阻挡放电发射光谱的影响   总被引:1,自引:0,他引:1  
利用介质阻挡放电实验系统测量了空气介质阻挡放电的发射光谱,研究了氩气含量对空气介质阻挡放电发射光谱的影响。在280~500 nm波长范围内,发现了氮分子第二正带系N2(3Π-3Π)的谱线和氮分子离子的第一负带系N+2(B 3Σ-X 2Σ)的谱线。在相同条件下加入10%氩气后,起始放电电压由26 kV降低到23 kV,介质阻挡放电和发射光谱强度都增强,谱线的半宽明显加大。随氩气含量的增加,各个氮分子第二正带系谱线强度的变化趋势不同,而两条氮分子离子第一负带系谱线391.44和427.81 nm的光谱强度都是降低的。  相似文献   

12.
利用发射光谱法,在氮气环境下研究了圆柱型空心阴极放电条纹的特性。测量得到了气压为20 Pa,放电电流为1.3 mA时条纹区的发射光谱,结果表明发射光谱主要为氮分子的第一正带系(B3ПgA3Пu)和 第二正带系(C3ПuB3Пg )。利用双原子光谱发射理论,计算得到了氮分子振动温度的空间分布特性。结果表明光谱线强度呈周期性分布,明纹中心处的谱线强度高于暗纹中心处的谱线强度。明纹中心处的N2分子振动温度为3 500~4 400 K,并且从阴极到阳极,明纹中心处光谱线强度和分子振动温度逐渐下降。同时测量得到了放电电流为1.0和1.5 mA时的发光条纹特性,研究了放电电流对条纹特性的影响。随着放电电流的增加,明纹中心处的分子振动温度升高,条纹间距增加。另外,利用测量得到的发光条纹,计算得到了条纹区的平均约化电场强度为44~49 m-1·Pa-1,并且由阴极向阳极逐渐降低。对于揭示气体放电中发光条纹的形成机理和促进空心阴极放电的稳定性有重要的参考价值。  相似文献   

13.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

14.
采用蒙特卡罗方法,对以CH4/H2为源料气体的电子助进化学气相沉积(EACVD)金刚石中的氢原子(Hα,Hβ和Hγ)、碳原子C(2p3s→2p2: λ=165.7 nm)以及CH(A2Δ→X2Π: λ=420~440 nm)的发射过程进行了模拟,研究了衬底温度对各发射谱线以及金刚石膜合成的影响。结果得知,各谱线强度随衬底温度的变化幅度很小,且在衬底表面附近的谱线强度随衬底温度的变化幅度相对于远离衬底的反应区域较大,这表明衬底温度的变化基本上不改变远离衬底的反应区域中反应基团成分,而只对衬底表面附近的反应过程有影响。由此得知,衬底温度对薄膜质量的决定性主要是由于衬底温度改变了衬底表面化学反应动力学过程和表面附近的反应基团的缘故,而不是衬底温度对反应空间中气相成分的影响。  相似文献   

15.
采用蒙特卡罗方法,对以CH4/H2为源料气体的电子助进化学气相沉积(EACVD)金刚石中的氢原子(Hα,Hβ,Hγ)、碳原子C(2p3s→2p2λ=165.7 nm)以及CH(A2ΔX2Π:λ=420~440 nm)的发射过程进行了模拟,研究了不同CH4浓度下各发射谱线的空间分布。结果表明,不同CH4浓度下各发射谱线在反应空间的大部分区域内均随距灯丝距离的增大而增大,而当到达基片表面附近时有所减弱。随着CH4浓度的增加,H谱线强度减弱,CH与C谱线强度增强。  相似文献   

16.
用皮秒脉冲高功率Nd∶YAG激光器抽运的光学参量发生/放大器作激发源,获得了NO分子在420~500 nm波长范围内的多光子离化谱,光谱图呈现分离谱的特征,表明在该波长区间NO分子以多光子共振方式离化。离化信号随激光强度的近四次方变化关系表明,在420~500 nm波长范围内NO分子吸收4个光子而离化。通过对谱线的标识,首次分离出NO分子以E 2Σ激发电子态为中间共振态的(3+1)多光子离化光谱序列,由谱线序列峰值波长得到NO分子E 2Σ电子态的振动常数,从而实现了采用多光子离化技术对该态能级结构的实验研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号