首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The influence of bacterial surface lipopolysaccharides (LPS) on cell transport and adhesion has been examined by use of three mutants of Escherichia coli K12 with well-characterized LPS of different lengths and molecular composition. Two experimental techniques, a packed-bed column and a radial stagnation point flow system, were employed to investigate bacterial adhesion kinetics onto quartz surfaces over a wide range of solution ionic strengths. Although the two systems capture distinct deposition (adhesion) mechanisms because of their different hydrodynamics, similar deposition kinetics trends were observed for each bacterial strain. Bacterial deposition rates were directly related to the electrostatic double layer interaction between the bacteria and quartz surfaces, in qualitative agreement with classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. However, DLVO theory does not fully explain the deposition behavior for the bacterial strain with the lengthy, uncharged O-antigen portion of the LPS. Neither the length nor the charge characteristics of the LPS molecule directly correlated to deposition kinetics, suggesting a complex combination of cell surface charge heterogeneity and LPS composition controls the bacterial adhesive characteristics. It is further suggested that bacterial deposition behavior is determined by the combined influence of DLVO interactions, LPS-associated chemical interactions, and the hydrodynamics of the deposition system.  相似文献   

2.
The adhesion kinetics of Burkholderia cepacia G4g and ENV435g have been investigated in a radial stagnation point flow (RSPF) system under well-controlled hydrodynamics and solution chemistry. The sensitivity of adhesion behavior to nutrient condition was also examined. Supplementary cell characterization techniques were conducted to evaluate the viability, hydrophobicity, electrophoretic mobility, size, and charge density of cells grown in both nutrient rich Luria broth (LB) and nutrient poor basal salts medium (BSM). Comparable adhesion kinetics were observed for the wild-type (G4g) and mutant (ENV435g) grown in the same medium; however, the attachment efficiency increased with the level of nutrient presence for both cell types by approximately 60%. Nutrient condition altered deposition due to its impact on the surface charge characteristics and size of the cells. Adhesion behavior was consistent with expectations based on classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory for colloidal interactions, as the adhesion efficiency increased with ionic strength. However, the results also suggest the involvement of non-DLVO type interactions that influence cell adhesion. Systematic experimentation with B. cepacia in the RSPF system demonstrated that the ENV435g mutant is not “adhesion deficient”; rather, adhesion for both the G4g and ENV435g was a function of the nutrient condition and resulting cell surface chemistry.  相似文献   

3.
The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO(2), rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and ion valence (NaCl vs CaCl(2)) comparable to the low end of environmentally relevant solution chemistry conditions. Solution chemistry was found to have a marked effect on the electrokinetic properties of NP aggregates and the sand and on the resulting extent of NP aggregate transport and retention in the porous media. Comparable transport and retention patterns were observed for NP aggregates in both NaCl and CaCl(2) solutions but at much lower ionic strength with CaCl(2). Transport experimental results showed temporal and spatial variations of NP aggregate deposition in the column. Specifically, the breakthrough curves displayed a transition from blocking to ripening shapes, and the NP retention profiles exhibited a shift of the maximum NP retention segment from the end toward the entrance of the column gradually with increasing ionic strength. Additionally, the deposition rates of the NP aggregates in both KCl and CaCl(2) solutions increased with ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Upon close examination of the results, it was found that the characteristics of the obtained transport breakthrough curves closely followed the general trends predicted by the DLVO interaction-energy calculations. However, the obtained NP retention profiles were found to deviate severely from the theory. We propose that a NP aggregate reconformation through collision between NP aggregates and sand grains reduced the repulsive interaction energies of NP-NP and NP-sand surfaces, consequently accelerating NP deposition with transport distance and facilitating approaching NP deposition onto NPs that had already been deposited. It is further suggested that TiO(2) NP transport and retention are determined by the combined influence of NP aggregate reconformation associated with solution chemistry, travel distance, and DLVO interactions of the system.  相似文献   

4.
The S-layer present at the outermost cell surface of some lactobacillus species is known to convey hydrophobicity to the lactobacillus cell surface. Yet, it is commonly found that adhesion of lactobacilli to solid substrata does not proceed according to expectations based on cell surface hydrophobicity. In this paper, the role of cell surface hydrophobicity of two lactobacillus strains with and without a surface layer protein (SLP) layer has been investigated with regard to their adhesion to hydrophobically or hydrophilically functionalized glass surfaces under well-defined flow conditions and in low and high ionic strength suspensions. Similarly, the interaction of the lactobacilli with similarly functionalized atomic force microscope (AFM) tips was measured. In a low ionic strength suspension, both lactobacillus strains show higher initial deposition rates to hydrophobic glass than to hydrophilic glass, whereas in a high ionic strength suspension no clear influence of cell surface hydrophobicity on adhesion is observed. Independent of ionic strength, however, AFM detects stronger interaction forces when both bacteria and tip are hydrophobic or hydrophilic than when bacteria and tip have opposite hydrophobicities. This suggest that the interaction develops in a different way when a bacterium is forced into contact with the tip surface, like in AFM, as compared with contacts developing between a cell surface and a macroscopic substratum under flow. In addition, the distance dependence of the total Gibbs energy of interaction could only be qualitatively correlated with bacterial deposition and desorption in the parallel plate flow chamber.  相似文献   

5.
Bacterial adhesion to glass and metal-oxide surfaces   总被引:1,自引:0,他引:1  
Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was significantly (P < 10(-25)) correlated with total adhesion free energy (U) between the bacteria and surface (A = 2162e(-1.8U)).Although the correlation was significant, agreement between the model and data was poor for the low energy surfaces (R2 = 0.68), indicating that better models or additional methods to characterize bacteria and surfaces are still needed to more accurately describe initial bacterial adhesion to inorganic surfaces.  相似文献   

6.
The deposition kinetics of RNA extracted from both virus and bacteria on silica surfaces were examined in both monovalent (NaCl) and divalent (CaCl(2)) solutions under a wide range of environmentally relevant ionic strength and pH conditions by utilizing a quartz crystal microbalance with dissipation (QCM-D). To better understand the RNA deposition mechanisms, QCM-D data were complemented by diffusion coefficients and zeta potentials of RNA as a function of examined solution chemistry conditions. Favorable deposition of RNA on poly-l-lysine-coated (positively charged) silica surfaces was governed by the convective-diffusive transport of RNA to the surfaces. The deposition kinetics of RNA on bare silica surfaces were controlled by classic Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions. The presence of divalent cations (Ca(2+)) in solutions greatly enhanced the deposition kinetics of RNA on silica surfaces. Solution pH also affected the deposition behavior of RNA on silica surfaces. Release experiments showed that detachment of RNA from silica surfaces was significant in NaCl solutions, whereas, the deposited RNA on silica surfaces in CaCl(2) solutions was more likely to be irreversible.  相似文献   

7.
A radial stagnation point flow system was used to investigate the influence of Cryptosporidium parvum surface properties on oocyst deposition kinetics onto solid surfaces. To determine the role of oocyst surface proteins in adhesion, the deposition kinetics of viable oocysts were compared with the deposition kinetics of oocysts treated (inactivated) with either heat or formalin. Results showed a significantly higher deposition rate with formalin and heat-treated oocysts compared to viable oocysts under identical solution ionic strengths. Low deposition rates and corresponding attachment efficiencies were observed with viable oocysts over the entire range of solution conditions investigated, even at high ionic strengths where DLVO theory predicts the absence of an electrostatic energy barrier. An "electrosteric" repulsion between the viable Cryptosporidium oocyst and the quartz substrate, attributed to proteins on the oocyst surface, is surmised to cause this low deposition rate. Inactivation of the oocysts with either formalin or heat resulted in increased attachment efficiencies over the entire range of ionic strengths examined. It is hypothesized that formalin and heat treatments alter the structure of surface proteins and thus reduce steric repulsion. Formalin treatment was also found to impart an increased hydrophobicity to the oocyst surface and thus greater enhancement in oocyst deposition kinetics compared to heat treatment.  相似文献   

8.
The adhesion of microbial cells to metal surfaces in aqueous media is an important phenomenon in both the natural environment and engineering systems. The adhesion of two anaerobic sulfate-reducing bacteria (Desulfovibrio desulfuricans and a local marine isolate) and an aerobe (Pseudomonas sp.) to four polished metal surfaces (i.e., stainless steel 316, mild steel, aluminum, and copper) was examined using a force spectroscopy technique with an atomic force microscope (AFM). Using a modified bacterial tip, the attraction and repulsion forces (in the nano-Newton range) between the bacterial cell and the metal surface in aqueous media were quantified. Results show that the bacterial adhesion force to aluminum is the highest among the metals investigated, whereas the one to copper is the lowest. The bacterial adhesion forces to metals are influenced by both the electrostatic force and metal surface hydrophobicity. It is also found that the physiological properties of the bacterium, namely the bacterial surface charges and hydrophobicity, also have influence on the bacteria-metal interaction. The adhesion to the metals by Pseudomonas sp. and D. desulfuricans was greater than by the marine SRB isolate. The cell-cell interactions show that there are strong electrostatic repulsion forces between bacterial cells. Cell probe atomic force microscopy has provided some useful insight into the interactions of bacterial cells with the metal surfaces.  相似文献   

9.
The deposition of eight bacterial strains on Teflon and glass in aqueous media with ionic strengths varying between 0.0001 and 1 M was measured and interpreted. Two types of interactions were considered: (1) those described by the DLVO theory, which comprise van der Waals attraction and electrostatic repulsion (bacteria and surfaces are both negatively charged); and (2) steric interactions between the outer cell surface macromolecules and the substrata. As a trend, at low ionic strength (<0.001 M), deposition is inhibited by DLVO-type electrostatic repulsion, but at high ionic strength (≥0.1 M) it is dominated by steric interactions. The ionic strength at which the transition from the DLVO-controlled to the sterically controlled deposition occurs, is determined by the extension of the macromolecules into the surrounding medium, which varied between 5 and 100 nm among the bacterial strains studied. The steric interactions either promote deposition by bridging or inhibit it by steric repulsion. Between Teflon and hydrophobic bacteria, bridging is generally observed. The surface of one bacterial strain contains amphiphilic macromolecules that form bridges with Teflon but induce steric repulsion on glass. The presence of highly polar anionic polysaccharide coatings on the cell impedes attachment on both glass and Teflon. For practice, the general conclusion is that the deposition of most bacteria is: (1) strongly inhibited by DLVO-type electrostatic repulsion in aqueous environments of low ionic strength such as rain water, streams and lakes; (2) controlled by DLVO and/or steric interactions in systems as domestic waste waters and saliva; and (3) determined by steric interactions only in more saline environments as milk, urine, blood and sea water.  相似文献   

10.
The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.  相似文献   

11.
The application of Bacillus subtilis as a flocculant for fine coal has been reported here. Zeta-potential measurements showed that both the coal and bacteria had similar surface charge as a function of pH. Surface free energy calculations showed that the coal was hydrophobic while the bacterium was hydrophilic. The adhesion of the bacteria to coal and subsequent settling was studied in detail. Adhesion of bacteria to coal surface and subsequent settling of coal was found to be quick. Both adhesion and settling were found to be independent of pH, which makes the process very attractive for field applications. The presence of an electrolyte along with the bacterium was found to not only enhance adhesion of bacteria, but also produce a clear supernatant. Further, the settled fraction was more compact than with bacteria alone. Interaction energy calculations using the extended DLVO theory showed that the electrical forces along with the acid–base interaction energy play a dominant role in the lower pH range. Above pH 7, the acid–base interaction energy is the predominant attractive force and is sufficient enough to overcome the repulsive forces due to electrical charges to bring about adhesion and thus settling of fine coal. With increase in electrolyte concentration, the change in total interaction energy with pH is minimal which probably leads to better adhesion and hence settling.  相似文献   

12.
Bacteria-metal interactions in aqueous solutions are important in biofilm formation, biofouling and biocorrosion problems in the natural environment and engineered systems. In this study, the adhesion forces of two anaerobes (Desulfovibrio desulfuricans and Desulfovibrio singaporenus) and an aerobe (Pseudomonas sp.) to stainless steel 316 in various aqueous systems were quantified using atomic force microscopy (AFM) with a cell probe. Results show that the nutrient and ionic strength of the solutions influence the bacteria-metal interactions. The bacteria-metal adhesion force was reduced in the presence of the nutrients in the solution, because a trace organic film was formed and thus decreased the metal surface wettability. Stronger ionic strength in the solution results in a larger bacteria-metal adhesion force, which is due to the stronger electrostatic attraction force between the positively charged metal surface and negatively charged bacterial surface. Solution pH also influences the interaction between the bacterial cells and the metal surface; the bacteria-metal adhesion force reached its highest value when the pH of the solution was near the isoelectric point of the bacteria, i.e. at the zero point charge. The adhesion forces at pH 9 were higher than at pH 7 due to the increase in the attraction between Fe ions and negative carboxylate groups.  相似文献   

13.
Bacterial adhesion to protein-coated surfaces is mediated by an interplay of specific and nonspecific interactions. Although nonspecific interactions are ubiquitously present, little is known about the physicochemical mechanisms of specific interactions. The aim of this paper is to determine the influence of ionic strength on the adhesion of two streptococcal strains to fibronectin films. Streptococcus mutans LT11 and Streptococcus intermedius NCTC11324 both possess antigen I/II with the ability to bind fibronectin from solution, but S. intermedius binds approximately 20x less fibronectin than does the S. mutans strain under identical conditions. Both strains as well as fibronectin films are negatively charged in low ionic strength phosphate buffered saline (PBS, 10x diluted), but bacteria appear uncharged in high ionic strength PBS. Physicochemical modeling on the basis of overall cell surface properties (cell surface hydrophobicity and zeta potentials) demonstrates that both strains should favor adhesion to fibronectin films in a high ionic strength environment as compared to in a low ionic strength environment, where electrostatic repulsion between equally charged surfaces is dominant. Adhesion of S. intermedius to fibronectin films in a parallel plate flow chamber was completely in line with this modeling, while in addition atomic force microscopy (AFM) indicated stronger adhesion forces upon retraction between fibronectin-coated tips and the cell surfaces in high ionic strength PBS than in low ionic strength PBS. Thus, the dependence of the interaction on ionic strength is dominated by the overall negative charge on the interacting surfaces. Adhesion of S. mutans to fibronectin films, however, was completely at odds with theoretical modeling, and the strain adhered best in low ionic strength PBS. Moreover, AFM indicated weaker repulsive forces upon approach between fibronectin-coated tips and the cell surfaces in low ionic strength PBS than in high ionic strength PBS. This indicated that the dependence of the interaction on ionic strength is dominated by electrostatic attraction between oppositely charged, localized domains on the interacting surfaces, despite their overall negative charge. In summary, this study shows that physicochemical modeling of bacterial adhesion to protein-coated surfaces is only valid provided the number of specific interaction sites on the cell surfaces is low, such as on S. intermedius NCTC11324. Nonspecific interactions are dominated by specific interactions if the number of specific interaction sites is large, such as on S. mutans LT11. Its ionic strength dependence indicates that the specific interaction is electrostatic in nature and operative between oppositely charged domains on the interacting surfaces, despite the generally overall negatively charged character of the surfaces.  相似文献   

14.
Attempts to measure the hydrophobicity of the cell surfaces of Gordonia amarae and Rhodococcus erythropolis, filamentous bacteria found in wastewater treatment plants, by several methods—microbial adhesion to hydrocarbons (MATH) or bacterial adhesion to hydrocarbons (BATH), contact angle, and micro-sphere adhesion to cells (MAC)—were unsuccessful. The results were erratic and inconsistent. This was in part because of the filamentous growth habit of G. amarae, but it was also a consequence of the fact that the ‘hydrophobicity’ of bacterial cells is not a clearly defined quantity. A technique is introduced in which bacteria are suspended in solutions of synthetic surfactants (non-ionic, cationic and anionic), and the suspensions aerated under defined conditions. The partitioning of bacterial cells between the foam and liquid phases was reproducible. The method was tested in model systems in which the bacteria were replaced by silica particles with defined surface modifications. Although this technique is not a direct measure of ‘hydrophobicity’, the partitioning of cells depends in part upon their surface hydrophobicity. In addition, qualitative information is gained about ionic interactions between the bacteria and the bubble surface. The results are pertinent to the problem of foaming in wastewater treatment plants.  相似文献   

15.
The aggregation and deposition kinetics of two multiwalled carbon nanotubes (MWNTs) with different degrees of surface oxidation are investigated using time-resolved dynamic light scattering (DLS) and quartz crystal microbalance with dissipation monitoring (QCM-D), respectively. Carboxyl groups are determined to be the predominant oxygen-containing surface functional groups for both MWNTs through X-ray photoelectron spectroscopy (XPS). The aggregation and deposition behavior of both MWNTs is in qualitative agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The critical coagulation concentration (CCC) of the highly oxidized MWNTs (HO-MWNTs) is significantly higher than the lowly oxidized MWNTs (LO-MWNTs) in the presence of NaCl (210 and 53 mM, respectively) since HO-MWNTs have a higher surface charge density. In contrast, the aggregation inverse stability profiles of HO-MWNTs and LO-MWNTs are identical and yield comparable CCCs (0.9 and 1.0 mM, respectively) in the presence of CaCl(2). Similar to the results obtained from the aggregation study, HO-MWNTs are considerably more stable to deposition on silica surfaces compared to LO-MWNTs in the presence of NaCl. However, both MWNTs have the same propensity to undergo deposition in the presence of CaCl(2). The remarkable similarity in the aggregation and deposition kinetics of HO-MWNTs and LO-MWNTs in CaCl(2) may be due to Ca(2+) cations having a higher affinity to form complexes with adjacent carboxyl groups on HO-MWNTs than with isolated carboxyl groups on LO-MWNTs.  相似文献   

16.
Understanding bacterial adhesion to surfaces requires knowledge of the forces that govern bacterial-surface interactions. Biofilm formation on stainless steel 316 (SS316) by three bacterial species was investigated by examining surface force interaction between the cells and metal surface using atomic force microscopy (AFM). Bacterial-metal adhesion force was quantified at different surface delay time from 0 to 60s using AFM tip coated with three different bacterial species: Gram-negative Massilia timonae and Pseudomonas aeruginosa, and Gram-positive Bacillus subtilis. The results revealed that bacterial adhesion forces on SS316 surface by Gram-negative bacteria is higher (8.53±1.40 nN and 7.88±0.94 nN) when compared to Gram-positive bacteria (1.44±0.21 nN). Physicochemical analysis on bacterial surface properties also revealed that M. timonae and P. aeruginosa showed higher hydrophobicity and surface charges than B. subtilis along with the capability of producing extracellular polymeric substances (EPS). The higher hydrophobicity, surface charges, and greater propensity to form EPS by M. timonae and P. aeruginosa led to high adhesive force on the metal surface.  相似文献   

17.
This paper presents experimental studies of the deposition of silicone oil drops onto two different solid surfaces in an aqueous solution. A series of deposition tests were conducted to measure the dimensionless mass transfer rate (Sherwood number). The effects of three kinds of aqueous solutions and two solid surfaces on the deposition process were studied and compared with the numerical predictions based on the well-known DLVO theory. More specifically, both the experimentally measured and the numerically predicted Sherwood numbers monotonically decrease as the pH value of the aqueous solution increases. It was also found that two ionic surfactant solutions have similar influences while the electrolyte solutions have opposite effects on the deposition rate on different solid surfaces. Finally, comparison of all the experimental results for the bare glass surface with the numerical simulations shows that the deposition process of the silicone oil drops onto the hydrophilic solid surface can be satisfactorily described by the classical DLVO theory. However, the deposition data for the FC725 precoated surface are significantly larger than the numerical predictions. This fact suggests that the so-called non-DLVO attractive interaction is involved in the deposition process with the hydrophobic solid surface. This additional non-DLVO attractive interaction, which is generally called the hydrophobic interaction, still remains to be incorporated into the existing DLVO theory, if this is possible.  相似文献   

18.
Microbial adhesion to the oil-water interface is an important parameter in biodegradation of hydrocarbons to enhance uptake and metabolism of compounds with very low aqueous solubility, but the mechanisms of adhesion are not well understood. Our approach was to study a range of compounds and mechanisms to promote the adhesion of a hydrophilic bacterium, Pseudomonas fluorescens strain LP6a, to an oil-water interface. The cationic surfactants cetylpyridinium chloride (CPC), poly-l-lysine and chlorhexidine gluconate (CHX) and the long chain alcohols 1-dodecanol and farnesol increased the adhesion of P. fluorescens LP6a to n-hexadecane from ca. 30 to 90% of suspended cells adhering. In contrast, adjusting the ionic strength of the suspending medium only increased the adhesion from about 8 to 30%. The alcohols, 1-dodecanol and farnesol, also caused a dramatic change in the oil-water contact angle of the cell surface, increasing it from 24 degrees to 104 degrees , whereas the cationic compounds had little effect. In contrast, cationic compounds changed the electrophoretic mobility of the bacteria, reducing the mean zeta potential from -23 to -7 mV in 0.01 M potassium phosphate buffer, but the alcohols, 1-dodecanol and farnesol, had no effect on zeta potential. Even though both types of compounds promoted cell adhesion to the n-hexadecane interface, the mechanisms were different. Alcohols acted through altering the cell surface hydrophobicity, whereas cationic surfactants changed the surface charge density.  相似文献   

19.
We develop a unique film holder combining a thin-film balance with AC impedance spectroscopy to measure disjoining pressure, film conductance, and film thickness simultaneously. Foam films stabilized by sodium dodecyl sulfate (SDS) are investigated with and without added sodium chloride (NaCl) electrolyte. Classical colloidal theory, Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, is tested rigorously over a wide range of solution conditions by comparing the surface charge densities fit to disjoining-pressure isotherms with those estimated independently from film-conductance and surface-tension data. Film-conductance measurements strongly suggest that the adsorbed anionic surfactant is partially complexed with counterions. Therefore, to reconcile the different values of charge densities calculated from surface tension and film conductance with those from disjoining pressure, we propose a simple ion-binding electrostatic model. The ion-complexation framework predicts increased ion complexing with increasing solution ionic strength, in agreement with surface-tension and film-conductance data. Unfortunately, it is not possible to describe similarly the trends of the measured disjoining-pressure isotherms because the diffuse-layer charge density increases, or equivalently, the ion complexation decreases with increasing ionic strength. Accordingly, the ion-binding extension of classical DLVO theory does not permit agreement between theory and independent experimental data from surface tension, disjoining pressure, and film conductance.  相似文献   

20.
This work aims to contribute to a better understanding of the ionic strength effect on microcystin and natural organic matter (NOM) surrogate adsorption by analyzing the importance of adsorbate molecular size, and surface concentration. Adsorption kinetics and/or isotherms were performed on PAC Norit SA-UF for four microcystin variants (MC-LR, MC-LY, MC-LW, MC-LF), and three NOM surrogates (salicylic acid (SA), tannic acid (TA), Aldrich humic acid (AHA)) at different solution ionic strengths. Results showed that the ionic strength effect depends upon the adsorbate surface concentration, cation charge (mono or divalent), and adsorbate molecular size. Potassium seemed not to affect the MC-LR adsorption, while calcium enhanced MC-LR kinetics and adsorption capacity. K+ and, particularly, Ca2+ improved the adsorption kinetics of the other microcystin variants. For identical surface concentration and ionic strength, the impact of K+ and Ca2+ on NOM surrogates depended on the adsorbate molecular size: K+ effect was only observed for AHA, whereas Ca2+ caused no effect on SA adsorption, slightly enhanced TA adsorption, and greatly enhanced AHA adsorption. MC-LR isotherms with two salt concentrations (KCl or CaCl2) indicated that, for the studied range of equilibrium surface concentration (5.3-18.7 mg/g), an enhanced adsorption regime prevails, and no transition regime was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号