首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ion diffusion kinetics has been studied using the data of conductivity measurements for aqueous solutions of sodium selenite with different concentrations and at different temperatures. Molecular and ionic self-diffusion coefficients have been determined for infinitely dilute solutions in the temperature range 288 K-313 K. The limiting values of ion mobility and changes in the energies of translation of water molecules from ions’ hydration shell have been found. At elevated temperatures, ΔE tr 0 increases for both ions in direct proportion to the crystallographic radius of the latter. Ion hydration numbers at 298 K have been calculated. The results of this study are interpreted in the light of Samoilov’s theory on positive and negative hydration of ions.Original Russian Text Copyright © 2004 by L. T. Vlaev and S. D. Genieva__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 870–876, September–October, 2004.  相似文献   

2.
We have tested the reference interaction site model (RISM) for the case of the hypernetted chain (HNC) and the partially linearized hypernetted chain (PLHNC) closures improved by a repulsive bridge correction (RBC) for ionic hydrated species. We have analyzed the efficiency of the RISM/HNC+RBC and RISM/PLHNC+RBC techniques for decomposition of the electrostatic and the nonpolar hydration energies on the energetic and the enthalpic parts for polyatomic ions when the repulsive bridge correction is treated as a thermodynamic perturbation, and investigate the repulsive bridge effect on the electrostatic potential induced by solvent on solute atoms. For a number of univalent and bivalent atomic ions, molecular cations, and anions, the method provides hydration energies deviating only by several percents from the experimental data. In most cases, the enthalpic contributions to the free energies are also close to the experimental results. The above models are able to satisfactory predict the hydration energies as well as the electrostatic potential around the ionic species. For univalent atomic ions, they also provide qualitative estimates of the Samoilov activation energies.  相似文献   

3.
Coefficients of self-diffusion, absolute speeds of movement of ions and the activation energy of electrical conductivity are found from the conductance measurements of aqueous solutions of selenic acid and sodium selenate at different concentrations in a temperature range of 288–318 K. Both the Stokes and effective radii of ions and their hydrate numbers at 298 K are calculated. The obtained results are interpreted in the frames of Samoilov theory on positive and negative hydration of ions.  相似文献   

4.
丁皓  朱宇  王俊  陆小华  马晶 《化学学报》2004,62(14):1287-1292,J002
对NaCl等碱金属水溶液的研究表明,室温条件下,离子在溶液中以水合形式存在,而在高温及超临界时,阴阳离子将结合成为离子对.采用量子化学计算,研究了MgCl2与CaCl2水溶液中水化与缔合的情况.通过Gaussian98软件包计算了阳离子的水化自由能以及离子对的生成能,从而获得水合离子与离子对的热力学稳定性及其随温度、压力的变化情况.通过比较热力学稳定性,考察了两种溶液中水化与缔合的变化情况.研究结果表明,MgCl2与CaCl2水溶液中离子水化与缔合的变化趋势与碱金属溶液基本一致,但是存在一个过渡区域,该区域内离子对与水合离子共存,因此需要采用不同于碱金属溶液的方法处理MgCl2与CaCl2水溶液.  相似文献   

5.
On the basis of conductivity studies, empirical equations describing the temperature and concentration dependences of the electrical conductance of SeO2 solutions in ordinary and heavy water were derived. Values of the equivalent conductivity of ions at infinite dilution, the first dissociation constant of selenous acid in the temperature region 12 to 45C and the thermodynamic parameters of the dissociation process were determined. Using these values, the absolute mobility, the transport numbers of the ions and their diffusion coefficients were calculated. Furthermore, the values of the transition energies Δ E tr. o for the ions were calculated at different temperatures. The dependencies observed were interpreted using Samoylov’s theory for positive/negative hydration of the ions. It was shown that the HSeO3 and DSeO3 ions were positively hydrated and stabilized the solvent structure, but these effects diminished with an increase of the temperature. The temperature dependences of the hydration numbers and the effective ionic radii were determined. The values of the changes of the Gibbs energy, entropy and enthalpy for the transitions of ions from one quasi-equilibrium state to another were calculated at different temperatures.  相似文献   

6.
Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.  相似文献   

7.
We study the solvation of polar molecules in water. The center of water's dipole moment is offset from its steric center. In common water models, the Lennard-Jones center is closer to the negatively charged oxygen than to the positively charged hydrogens. This asymmetry of water's charge sites leads to different hydration free energies of positive versus negative ions of the same size. Here, we explore these hydration effects for some hypothetical neutral solutes, and two real solutes, with molecular dynamics simulations using several different water models. We find that, like ions, polar solutes are solvated differently in water depending on the sign of the partial charges. Solutes having a large negative charge balancing diffuse positive charges are preferentially solvated relative to those having a large positive charge balancing diffuse negative charges. Asymmetries in hydration free energies can be as large as 10 kcal/mol for neutral benzene-sized solutes. These asymmetries are mainly enthalpic, arising primarily from the first solvation shell water structure. Such effects are not readily captured by implicit solvent models, which respond symmetrically with respect to charge.  相似文献   

8.
A hydration-shell model has been developed for calculating the interaction energy between ions in water. The hydration shell around each ion contains a few tightly bound water molecules and a larger number of less tightly bound molecules. The energies of their interaction with the ion and the size of the hydration shell have been derived from published experimental data for ion-water clusters in the gas phase. An expression derived for the interaction energy of two univalent ions in water incorporates the following effects: a Lennard-Jones 6–12 interaction, a Coulomb interaction between the charges, the polarization of the hydration shells by a neighboring ion, and an energy term for the removal of water from the hydration shells when the hydration shells of two ions overlap. The effective dielectric constant at small ion-ion distances is the only adjustable parameter. Computed interaction energies for aqueous solutions of twelve alkali halides match experimental values, derived from conductimetric measurements, with an average error of ±14%.  相似文献   

9.
Molecular dynamics simulations of single Mg2+ and Ca2+ ions in water have been carried out. Different ion-water potentials from the literature have been used, whereas the same water potential, a rigid simple point charged model, has been considered in all the simulations. Structural, thermodynamic, and dynamic properties have been calculated, and the results for different potentials have been compared with available experimental data. The study includes ion–water radial distribution functions, coordination numbers, solution enthalpies, hydration free energies, self-diffusion coefficients, and reorientational times of water molecules in the hydration shells.  相似文献   

10.
The sequential hydration energies and entropies with up to four water molecules were obtained for MXM(+) = NaFNa(+), NaClNa(+), NaBrNa(+), NaINa(+), NaNO(2)Na(+), NaNO(3)Na(+), KFK(+), KBrK(+), KIK(+), RbIRb(+), CsICs(+), NH(4)BrNH(4)(+), and NH(4)INH(4)(+) from the hydration equilibria in the gas phase with a reaction chamber attached to a mass spectrometer. The MXM(+) ions as well as (MX)(m)M(+) and higher charged ions such as (MX)(m)M(2)(2+) were obtained with electrospray. The observed trends of the hydration energies of MXM(+) with changing positive ion M(+) or the negative ion X(-) could be rationalized on the basis of simple electrostatics. The most important contribution to the (MXM-OH(2))(+) bond is the interaction of the permanent and induced dipole of water with the positive charge of the nearest-neighbor M(+) ion. The repulsion due to the water dipole and the more distant X(-) has a much smaller effect. Therefore, the bonding in (MXM-OH(2))(+) for constant M and different X ions changes very little. Similarly, for constant X and different M, the bonding follows the hydration energy trends observed for the naked M(+) ions. The sequential hydration bond energies for MXM(H(2)O)(n)(+) decrease with n in pairs, where for n = 1 and n = 2 the values are almost equal, followed by a drop in the values for n = 3 and n = 4, that again are almost equal. The hydration energies of (MX)(m)M(+) decrease with m. The mass spectra with NaCl, obtained with electrospray and observed in the absence of water vapor, show peaks of unusually high intensities (magic numbers) at m = 4, 13, and 22. Experiments with variable electrical potentials in the mass spectrometer interface showed that some but not all of the ion intensity differentiation leading to magic numbers is due to collision-induced decomposition of higher mass M(MX)(m)(+) and M(2)(MX)(m)(2+) ions in the interface. However, considerable magic character is retained in the absence of excitation. This result indicates that the magic ions are present also in the saturated solution of the droplets produced by electrospray and are thus representative of particularly stable nanocrystals in the saturated solution. Hydration equilibrium determinations in the gas phase demonstrated weaker hydration of the magic ion (NaCl)(4)Na(+).  相似文献   

11.
The Gibbs free energies of transfer of selected ions from water to concentrated aqueous ovalbumin and albumin (DeltaW(W') G degrees j) have been determined by ion-transfer voltammetry. Negative values for the tetrabutylammonium ion suggest its direct binding to ovalbumin. In contrast, for alkali cations and bromide, the DeltaW(W') G degrees j values are positive and increase with increasing ovalbumin concentration. Positive values are confirmed for concentrated aqueous albumin and poly(styrenesulfonate) as well. The largest value (ca. 10 kJ mol(-1)) is found for the transfer of K(+) from water to 30 wt % ovalbumin. To reveal the solvation structure of these ions in ovalbumin solutions, X-ray absorption fine structure (XAFS) measurements have been performed at the K, Rb, and Br K-edges. Interestingly, the spectra obtained in 30 wt % ovalbumin solutions are identical to those for the corresponding hydrated ions. This strongly suggests that the first coordination shell structures of these ions are not affected by a large concentration of ovalbumin. The detected positive free energy of transfer is slightly lower than the hydrogen bonding energy of a water molecule and should thus come from the perturbation of the second and farther hydration shells of the ions under a water-shortage condition caused by a high concentration of ovalbumin.  相似文献   

12.
A set of most probable ionic radii have been formulated using a combination of deduction from r 0 values and experimental electron density maps. The relationship of the new radii to the free energies of hydration of gaseous ions is discussed.  相似文献   

13.
A polarizable potential function for the hydration of alkali and halide ions is developed on the basis of the recent SWM4-DP water model [Lamoureux, G.; MacKerell, A. D., Jr.; Roux, B. J. Chem. Phys. 2003, 119, 5185]. Induced polarization is incorporated using classical Drude oscillators that are treated as auxiliary dynamical degrees of freedom. The ions are represented as polarizable Lennard-Jones centers, whose parameters are optimized to reproduce the binding energies of gas-phase monohydrates and the hydration free energies in the bulk liquid. Systematic exploration of the parameters shows that the monohydrate binding energies can be consistent with a unique hydration free energy scale if the computed hydration free energies incorporate the contribution from the air/water interfacial electrostatic potential (-540 mV for SWM4-DP). The final model, which can satisfyingly reproduce both gas and bulk-phase properties, corresponds to an absolute scale in which the intrinsic hydration free energy of the proton is -247 kcal/mol.  相似文献   

14.
The influence of strontium ions on the relaxation dynamics of lithium ions in bismuthate glasses has been investigated in the frequency range of 10 Hz to 2 MHz. We have observed that the conductivity increases and the activation energy decreases with the increase of SrO content in the glass compositions with fixed Li2O content. We have also observed that the conductivity increases and the activation energy decreases when Sr2+ ions are replaced by Li+ ions, keeping the glass former content fixed. We have shown that the estimated mobile ion concentration is almost independent of temperature and SrO content in the compositions. We have further shown that a fraction of total lithium ions are mobile for all glass compositions. The results have been interpreted on the basis of the modification of the bismuthate network by the addition of SrO, which enhances the mobility of Li ions, without altering the mobile Li+ ion concentration. We have also shown that the conductivity relaxation in these glasses is independent of temperature and composition, and the nonexponential parameter is less than that for the lithium bismuthate glasses without SrO.  相似文献   

15.
Calculations using the GAUSSIAN 03 program package were performed to determine the hydrated structures of lithium, potassium, LiCl, NaCl, and sulfonic cation exchanger in the form of alkali metal ions. For ions with positive hydration, the distance between the radii of the first and second spheres of hydration water is larger than in pure water; for ions with negative hydration, this distance is smaller. Salts with different types of hydration for cation and anion have hydrated structures similar to those of ions with negative hydration.  相似文献   

16.
In this study, we revisit the protocol previously proposed within the framework of the Miertus-Scrocco-Tomasi (MST) continuum model to define the cavity between the solute and solvent for predicting hydration free energies of univalent ions. The protocol relies on the use of a reduced cavity (around 10-15% smaller than the cavity used for neutral compounds) around the atom(s) bearing the formal charge. The suitability of this approach is examined here for a series of 47 univalent ions for which accurate experimental hydration free energies are available. Attention is also paid to the effect of the charge renormalization protocol used to correct uncertainties arising from the electron density located outside the solute cavity. The method presented here provides, with a minimum number of fitted parameters, reasonable estimates within the experimental error of the hydration free energy of ions (average relative error of 4.7%) and is able to reproduce solvation in water of both small and large ions.  相似文献   

17.
The kinetics of the catalytic hydration of acetylene to acetaldehyde in the gas-phase by incorporation of catalytic metal ions on molecular sieves has been studied in a differential reactor. The main product was acetaldehyde besides of small amounts of crotonaldehyde and acetic acid. The catalysts [cadmium(II)-, zinc(II)-, copper(II)- and silver(I)-13 X-molecular sieves] were deactivated at a rate proportional to the square of the hydration rate. The initial hydration rate calculated on the basis of this relation was first order in the acetylene concentration. Starting rate of hydration and rate of deactivation increase with increasing concentration of metal ions on the sieve. The temperature dependence of the rate follows the law of Arrhenius The activation energies of hydration and deactivation, respectively, were calculated. Pore diffusion is a limiting factor. The poison is homogeneously deposited on the catalyst and weakly adsorbed, as it is shown by the criterion of Wheeler. The rate of deactivation decreases with increasing water/acetylene ratio. The deactivation rate which is due to deposition of polymerised acetylene and/or acetaldehyde, is slow with zinc and cadmium catalysts, and more rapid with copper and silver catalysts.  相似文献   

18.
It is shown that formation enthalpy and activation energy of the electrical conductivity in stoichiometric wüstite can be estimated with the methods of quantum chemistry using the properties of its clusters. The clusters are represented by crystal lattice fragments with fixed or optimized geometric parameters. The formation enthalpy is determined by extrapolating the energy of clusters according to the formulas of simple theories of clusters. The activation energy of electrical conductivity is calculated from relative total energies of formula units for various spin states of wüstite clusters. Calculations were performed with efficient quantum chemical methods PM7 and PBE/sbk which were chosen according to test calculations of bonding and ionization energies for the ground states of the iron atom, its ions, and some of its compounds. The results are in satisfactory agreement with experimental literature data.  相似文献   

19.
How ions affect the structure of water   总被引:1,自引:0,他引:1  
We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.  相似文献   

20.
By use of a rotating Pd-disc electrode the trace diffusion coefficient of the formate anion in 5 M KOH and in 5 M NaOH was measured for different electrolyte temperatures. The results obtained indicate that the Stokes-radii as well as the activation energies for the diffusion of the formate ions in KOH differ significantly from those in NaOH. This can be explained by different hydration of the formate anions in the different electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号