首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The regioselective hydrosilylation of terminal and internal alkynes catalyzed by the novel (IPr)Pt(AE) ( 7) (IPr = bis(2,6-diisopropylphenyl)imidazo-2-ylidene, AE = allyl ether) complex is presented. The (IPr)Pt(AE) catalyst displays enhanced activity and regioselectivity for the hydrosilylation of terminal and internal alkynes with low catalyst loading (0.1 to 0.05 mol %) when compared to the parent (IPr)Pt(DVDS) complex ( 6) (DVDS = divinyltetramethyldisiloxane). The reaction leads to exquisite regioselectivity in favor of the cis-addition product on the less hindered terminus of terminal and internal alkynes. The solvent effects were examined for the difficult hydrosilylation of benzylpropargyl ether. In light of the observed product distribution and kinetic data, a mechanistic scheme is proposed involving two competing catalytic cycles. One cycle leads to high regioselectivities while the other, having lost the stereodirecting IPr carbene ligand, displays low regiocontrol and activities. The importance of this secondary catalytic cycle is either caused by the strong coordinating ability of the alkyne or by the low reactivity of the silane or both.  相似文献   

2.
We demonstrate a simple method for coupling alkynes to alkynes. The method involves tandem azide-alkyne cycloaddition reactions ("click" chemistry) for the immobilization of 1-alkyne species onto an alkyne modified surface in a one-pot procedure. In the case presented, these reactions take place on a nonoxidized Si(100) surface although the approach is general for linking alkynes to alkynes. The applicability of the method in the preparation of electrically well-behaved functionalized surfaces is demonstrated by coupling an alkyne-tagged ferrocene species onto alkyne-terminated Si(100) surfaces. The utility of the approach in biotechnology is shown by constructing a DNA sensing interface by derivatization of the acetylenyl surface with commercially available alkyne-tagged oligonucleotides. Cyclic voltametry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry are used to characterize the coupling reactions and performance of the final modified surfaces. These data show that this synthetic protocol gives chemically well-defined, electronically well-behaved, and robust (bio)functionalized monolayers on silicon semiconducting surfaces.  相似文献   

3.
Exploring new reactivity of metal nitrides is of great interest because it can give insights to N2 fixation chemistry and provide new methods for nitrogenation of organic substrates. In this work, reaction of a (salen)ruthenium(VI) nitrido complex with various alkynes results in the formation of novel (salen)ruthenium(III) imine complexes. Kinetic and computational studies suggest that the reactions go through an initial ruthenium(IV) aziro intermediate, followed by addition of nucleophiles to give the (salen)ruthenium(III) imine complexes. These unprecedented reactions provide a new pathway for nitrogenation of alkynes based on a metal nitride.  相似文献   

4.
Carbonylcobalt(0) species have been used as linkers between alkynes and a polymer support for the first time. The alkynes may be loaded indirectly onto a phosphine functionalised polymer via their hexacarbonyldicobalt(0) complex, or directly onto a cobalt coated polymer. The alkynes have been released either as alkynes, thus providing a traceless method of immobilising alkynes, or by reaction with an alkene to generate a cyclopentenone via the Pauson-Khand reaction. The cobalt coated polymers produced during this study were shown to catalyse the Pauson-Khand reaction.  相似文献   

5.
A new method for the highly stereoselective cis semihydrogenation of internal alkynes, semihydrogenation of terminal alkynes, reduction of dienes to alkenes, and reduction of alkynes and alkenes to alkanes is described based on in situ generated both Ni(0) nanoparticles and molecular hydrogen.  相似文献   

6.
<正>A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.  相似文献   

7.
Copper(II) oxide nanoparticles supported on magnesia have been prepared from Cu(II) supported on magnesia by hydrogen reduction at 400 °C followed by storage under ambient conditions. X-ray photoelectron spectroscopy of the material clearly shows that immediately after the reduction copper(0)-metal nanoparticles are present on the magnesia support, but they undergo fast oxidation to copper oxide upon contact with the ambient for a short time. TEM images show that the catalytically active CuO/MgO material is formed of well-dispersed copper oxide nanoparticles supported on fibrous MgO. CuO/MgO exhibits a remarkable catalytic activity for the monoborylation of aromatic, aliphatic, terminal, and internal alkynes, the products being formed with high regio- (borylation at the less substituted carbon) and stereoselectivity (trans-configured). CuO/MgO exhibits complete chemoselectivity towards the monoborylation of alkynes in the presence of alkenes. Other metal nanoparticles such as gold or palladium are inactive towards borylation, but undergo undesirable oligomerization or partial hydrogenation of the C≡C triple bond. In contrast, platinum, either supported on magnesia or on nanoparticulate ceria, efficiently promotes the stereoselective diborylation of alkynes to yield a cis-configured diboronate alkene. By using platinum as the catalyst we have developed a tandem diborylation/hydrogenation reaction that gives vic-diboronated alkanes from alkynes in one pot.  相似文献   

8.
Miura T  Yamauchi M  Murakami M 《Organic letters》2008,10(14):3085-3088
1,2,3-Benzotriazin-4(3H)-ones reacted with internal and terminal alkynes in the presence of a nickel(0)/phosphine catalyst to give a wide range of substituted 1(2H)-isoquinolones in high yield. The reaction proceeded through denitrogenative activation of the triazinone moiety and the following insertion of alkynes.  相似文献   

9.
The Rh-catalyzed reaction of alkynes with 2-bromophenylboronic acids involves carbonylative cyclization to give indenones. The key steps in the reaction involve the addition of an arylrhodium(I) species to an alkyne and the oxidative addition of C-Br bonds on the adjacent phenyl ring to give vinylrhodium(I) species II. The regioselectivity depends on both the electronic and the steric nature of the substituents on the alkynes. A bulky group and an electron-withdrawing group favor the -position of indenones. In the case of silyl- or ester-substituted alkynes, the regioselectivity is extremely high. The selectivity increases in the order SiMe3 > COOR > aryl > alkyl. The reaction of norbornene with 2-bromophenylboronic acids under 1 atm of CO gives the corresponding indanone derivative. The reaction of alkynes with 2-bromophenylboronic acids under nitrogen gives naphthalene derivatives, in which two molecules of alkynes are incorporated. A vinylrhodium complex similar to II can also be generated by a different route by employing 2-bromophenyl(trimethylsilyl)acetylene and arylboronic acids in the presence of Rh(I) complex as the catalyst, resulting in the formation of indenones. The reaction of 1-(2-bromophenyl)-hept-2-yn-1-one with PhB(OH)2 in the presence of Rh(I) complex also resulted in carbonylative cyclization to give an indan-1,3-dione derivative.  相似文献   

10.
Zero-valent palladium precatalysts containing rigid bidentate bis(arylimino)acenaphthene ligands (shown schematically) facilitate the highly stereoselective homogeneous catalytic hydrogenation of alkynes to (Z)-alkenes. Internal, terminal, aryl-substituted, and cyclic alkynes are suitable substrates, as are some enynes, which are chemoselectively hydrogenated to dienes. E=CO(2)Me; R(1), R(2)=4-OCH(3), 4-CH(3), 2,6-(CH(3))(2).  相似文献   

11.
An efficient copper-catalyzed multicomponent reaction was developed for the synthesis of (arylselanyl)- or (arylsulfenyl)-alkyl-1,2,3-triazolo-1,3,6-triazonines. The products were obtained in moderate to excellent yields via the reaction of o-phenylenediamine, 2-azidobenzaldehyde and different arylchalcogenyl alkynes using catalytic copper iodide in 1,4-dioxane at 100?°C. The reactions tolerated a range of substituents on the arylchalcogenyl alkynes and proved to be an efficient methodology for the combinatorial synthesis of new selenium or sulfur-containing triazonine derivatives.  相似文献   

12.
Readily available Pd(II) chloride catalysts can catalyze selective and efficient oxidative coupling between N-aryl-2-aminopyridines and internal alkynes to yield N-(2-pyridyl)indoles. This process involves the ortho C-H activation of N-aryl-2-aminopyridines, and CuCl(2) was used as an oxidant. Compared to our previously reported Rh(III)-catalyzed synthesis of this class of product, this method is advantageous with a wider scope of alkynes and cost-effective Pd(II) catalysts. Molecular oxygen can be used as a terminal oxidant.  相似文献   

13.
A pi-acceptor phosphine-electron-deficient olefin ligand was found effective in promoting Pd-catalyzed C(sp)-C(sp) cross-coupling reactions. The new protocol realized the cross-coupling of a broad scope of terminal alkynes and haloalkynes in good to excellent yields with high selectivities. Electron-rich alkynes, which are normally difficult substrates in Glaser couplings, could be employed as either nucleophiles or electrophiles. Alkynes bearing similar substituents, such as n-C5H11CCBr and n-C4H9CCH, which usually suffer from homocoupling side reactions under Cadiot-Chodkiewicz conditions, were successfully cross-coupled in the system. Preliminary kinetic studies revealed that the reaction rate was zero-order in the concentrations of both haloalkynes and terminal alkynes and first order in the loading of Pd(dba)2 and exhibited no obvious dependence on the loading of the copper salt. Control experiments with other phosphines such as PPh3 and DPPF as the ligand were carried out. All the kinetic evidence indicated that the phosphine-olefin ligand facilitated the reductive elimination in the catalytic cycle.  相似文献   

14.
An efficient, amine- and phosphine-free palladium(II)-catalyzed homocoupling of terminal alkynes has been developed. In the presence of PdCl2, CuI, Me3NO, and NaOAc, homocoupling of various terminal alkynes underwent smoothly to afford the corresponding diynes in moderate to high yields without any phosphine ligands. In contrast, the presence of a phosphine ligand (PPh3) disfavored this palladium-catalyzed homocoupling procedure. Bases, solvents, and CuI have fundamental influence on the palladium-catalyzed homocoupling of terminal alkynes.  相似文献   

15.
Cross-dimerization of various terminal alkynes with different bulky terminal alkynes such as triisopropylsilylacetylene and 1-trimethylsilyloxy-1,1-diphenyl-2-propyne efficiently proceeds in the presence of a rhodium catalyst system to produce the corresponding (E)-enynes with high regio- and stereoselectivity.  相似文献   

16.
Davies HM  Lee GH 《Organic letters》2004,6(8):1233-1236
Dirhodium tetrakis((S)-N-(dodecylbenzenesulfonyl)prolinate) (Rh(2)(S-DOSP)(4)) is an effective chiral catalyst for the enantioselective cyclopropenation of alkynes by methyl aryldiazoacetates. [reaction: see text]  相似文献   

17.
An efficient and practical copper-catalyzed highly regio- and stereoselective borylcupration of internal alkynes with bis(pinacolato)diboron using a catalytic amount of K(2)CO(3) as base producing Z-alkenylboron compounds has been demonstrated by applying the ligand effect: commercially available electron-rich tris(p-methoxyphenyl) phosphine ensures a smooth and efficient reaction. Functionalized alkynes, such as propargylic alcohols and derivatives as well as N-propargyl tosylamide, may also be used with excellent selectivity.  相似文献   

18.
Hydroamination and hydrothiolation are the most efficient and completely atom-economical process to construct important enamine and vinyl sulfide intermediates in pharmaceutical and organic chemistry. The cyclic trimeric phosphazene base (CTPB) showed great catalytic activity for the anti-Markovnikov stereoselective hydroamination and hydrothiolation of alkynes in good to excellent yields. A broad substrate scope of alkynes and nucleophiles was demonstrated, including aryl and heteroaryl alkynes, terminal and internal alkynes, different N-heterocycles, thiols and thiophenols. This versatile and cost-efficient approach with good stereoselectivity and excellent functional group tolerance provided new opportunity for the organocatalyzed hydrofunctionalization of alkynes.  相似文献   

19.
We reported a selective semihydrogenation (deuteration) of numerous terminal and internal alkynes using H2O (D2O) as the H (D) source over a Pd-P alloy cathode at a lower potential. P-doping caused the enhanced specific adsorption of alkynes and the promoted intrinsic activity for producing adsorbed atomic hydrogen (H*ads) from water electrolysis. The semihydrogenation of alkynes could be accomplished at a lower potential with up to 99 % selectivity and 78 % Faraday efficiency of alkene products, outperforming pure Pd and commercial Pd/C. This electrochemical semihydrogenation of alkynes might proceed via a H*ads addition pathway rather than a proton-coupled electron transfer process. The decreased amount of H*ads at a lower potential and the more preferential adsorption of the Pd-P to C≡C π bond than C=C moiety resulted in the excellent alkene selectivity. This method was capable of producing mono-, di-, and tri-deuterated alkenes with up to 99 % deuterium incorporation.  相似文献   

20.
硫酸高铈催化炔烃的水合反应研究   总被引:1,自引:0,他引:1  
刘文杰  李金恒 《有机化学》2006,26(8):1073-1078
炔烃经水合反应生成酮是有机合成中最重要和最基本的进行官能团转换的方法之一. 我们提供了一种价廉且具有高选择性的硫酸高铈催化炔烃水合方法. 实验结果表明: 在硫酸高铈(0.1 mmol)、浓硫酸(0.06 mL)、水(0.02 mL)和苯(5 mL)且反应温度为70 ℃的反应条件下, 炔烃(1 mmol)可以顺利发生水合反应生成酮.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号