首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
ABSTRACT

The present work is devoted to the thermochemical study of solvation of ionic liquids (IL) in benzene. The solution enthalpies of 1-ethyl-3-methylimidazolium tricyanomethanide [EMIM][C(CN)3], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], 1-octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][NTf2] and 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][TfO] in benzene were measured. The solvation enthalpies of imidazolium-based IL were calculated. Molar refractions of imidazolium-based IL form literature data on density and refractive indexes of IL were also calculated. The linear correlation between solvation enthalpy and molar refraction of IL was observed. This correlation can be used to calculate the vaporization enthalpy of imidazolium-based IL from solution calorimetry data.  相似文献   

2.
Hirayama N  Deguchi M  Kawasumi H  Honjo T 《Talanta》2005,65(1):255-260
Possible use of room temperature ionic liquids (RTILs) as chelate extraction solvent was evaluated by using 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). These RTILs showed high extraction performance for divalent metal cations with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htta). The extracted metals were back-extracted into 1 mol dm−3 nitric acid quantitatively. Furthermore, the extracted species were estimated as neutral hydrated complexes M(tta)2(H2O)n (n= 1 or 2) for M = Ni, Cu and Pb and anionic complexes M(tta)3 for M = Mn, Co, Zn and Cd.  相似文献   

3.
Abstract

We show that the superoxide ion (O2 ??) generated electrochemically from oxygen dissolved in room-temperature ionic liquids (RTILs) reacts with primary and secondary alcohols to form the corresponding ketones and carboxylic acids, respectively. Specifically, we study the conversion of benzhydrol to benzophenone and benzyl alcohol to benzaldehyde/benzoic acid. The kinetics (e.g., rate, selectivity, and yield) for these reactions are also determined as functions of the variations in the structure of the ionic liquids. The RTILs used here are imidazolium-based cations where the functional groups on the imidazolium ring are modified. Specifically, 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], 1-butyl-2,3-dimethylimidazolium hexafluorophosphate [bdmim][PF6], and 1-hexyl-3-methylimidazolium hexafluorophosphate [hmim][PF6] are used as the reaction medium. These results are compared to an ammonium-based RTIL (N-butyl-N-trimethylammonium bis(trifluoromethylsulfonyl)imide). The results show that the nucleophilic attack by the O2 ?? of both the RTIL and the alcohol, especially that of the H atom at the R2 position of the [bmim][PF6] and [hmim][PF6], greatly affects the yields. No RTIL degradation products were detected for the reactions in [bdmim][PF6] and N-butyl-N-trimethylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. For the benzyl alcohol oxidation reaction in the RTIL, N-butyl-N-trimethylammonium bis(trifluoromethylsulfonyl)imide, benzaldehyde formed did not undergo further oxidation to form benzoic acid, which may be due to the greater hydrophobicity of this RTIL. The competitive reaction kinetics between the alcohol and RTIL component must be considered in the selection of the RTIL solvent system.  相似文献   

4.
Using angle-resolved X-ray photoelectron spectroscopy (ARXPS), we investigate the topmost nanometers of various binary ionic liquid (IL) mixtures at different temperatures in the liquid state. The mixtures consist of ILs with the same [PF6] anion but two different cations, namely 3-methyl-1-(3,3,4,4,4-pentafluorobutyl)imidazolium hexafluorophosphate, [PFBMIm][PF6], and 1-butyl-3-methylimidazolium hexafluorophosphate, [C4C1Im][PF6], with 10, 25, 50 and 75 mol % content of [PFBMIm][PF6]. We observe a preferential enrichment of the fluorinated chain in the topmost layer, relative to the bulk composition, which is most pronounced for the lowest content of [PFBMIm][PF6]. Upon cooling the mixtures stepwise from 95 °C until surface charging effects in XPS indicate solidification, we observe a pronounced increase in surface enrichment of the fluorinated chain with decreasing temperature in the liquid state. In contrast to the mixtures with lower [PFBMIm][PF6] contents, cooling the 75 mol % mixture additionally shows an abrupt decrease of the fluorinated chain signal before complete solidification occurs, which is assigned to partial precipitation effects.  相似文献   

5.
The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][Cl]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim] BF4]), 1-hexyl- 3-methylimidazolium chloride ([hmim][Cl]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), and the [omim][BF4] + [omim][Cl], [hmim][BF4] + [hmim][Cl], and [hmim][PF6] + [hmim][Cl] binary mixtures were studied at dif- ferent temperatures. It was demonstrated that the densities of both the neat ILs and their mixtures varied linearly with temper- ature. The density sensitivity of a binary mixture is between those of the two components. The excess molar volumes (VE) of [hmim][BF4] + [hmim][Cl] and [hmim][PF6] + [hmim][Cl] mixtures are positive in the whole composition range. For [omim][BF4] + [omim][Cl], the VE is also positive in the [omim][Cl]-rich region, but is negative in the [omim][BF4]-rich re- gion. The viscosity or conductivity of a mixture is in the intermediate of those of the two neat ILs. For all the neat ILs and the binary mixtures studied, the order of conductivity is opposite to that of the viscosity. The Vogel-Tammann-Fulcher (VTF) equations can be used to fit the viscosity and conductivity of all the neat ILs and the binary mixtures. The neat ILs and their mixtures obey the Fractional Walden Rule very well, and the values of the Walden slopes are all smaller than unit, indicating obvious ion associations in the neat ILs and the binary mixtures.  相似文献   

6.
Room temperature ionic liquids (RTILs) have been used as novel solvents to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. The hydrophobic character and water immiscibility of certain ionic liquids allow their use in solvent extraction of hydrophobic compounds. In this work, a typical room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent to study liquid/liquid extraction of heavy metal ions. Dithizone was employed as a metal chelator to form neutral metal-dithizone complexes with heavy metal ions to extract metal ions from aqueous solution into [C4mim][PF6]. This extraction is possible due to the high distribution ratios of the metal complexes between [C4mim][PF6] and aqueous phase. Since the distribution ratios of metal dithiozonates between [C4mim][PF6] and aqueous phase are strongly pH dependent, the extraction efficiencies of metal complexes can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation, and preconcentraction of heavy metal ions with the biphasic system of [C4mim][PF6] and aqueous phase can be achieved by controlling the pH value of the extraction system. Preliminary results indicate that the use of [C4mim][PF6] as an alternate solvent to replace traditional organic solvents in liquid/liquid extraction of heavy metal ions is very promising.  相似文献   

7.
离子液体型表面活性剂研究   总被引:2,自引:0,他引:2  
易封萍  李积宗  陈斌 《化学学报》2008,66(2):239-244
以1-甲基咪唑为原料, 制备了6个常规离子液体: 1-正丁基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[bmim][BF4]及[bmim][PF6])、1-正己基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[hmim][BF4]及[hmim][PF6])、1-正十六烷基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[C16mim][BF4]及[C16mim][PF6])和4个功能化离子液体: 1-(2-羟乙基)-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[2-hemim][BF4]及[2-hemim][PF6])、1-乙氧羰基甲基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[eocmmim][BF4]及[eocmmim][PF6]). 研究了这两类离子液体的一些物理性能, 旨在挖掘离子液体在香料香精化妆品工业中的应用价值. 分别检测了它们与一般溶剂的互溶性, 并测定了它们的表面张力和发泡性能, 实验结果表明, 仅[C16mim][BF4]和[C16mim][PF6]具有发泡性能, 发泡力分别为68和120 mm.  相似文献   

8.
Previously, we reported the selective simultaneous separation of the substrates and products of a transesterification reaction (vinyl butyrate, 1-butanol, butyl butyrate, and butyric acid) through supported liquid membranes (SLMs) based on two ionic liquids (ILs): 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim+][PF6], and 1-octyl-3-methylimidazolium hexafluorophosphate, [omim+][PF6]. The significant differences observed in the selectivity values, attributed to the different nature of the ionic liquid phase used, led us to further investigate this matter.  相似文献   

9.
10.
Using imidazole as the starting material, the synthesis of a new bicyclic ionic liquid [b-3C-im][NTf2] is described. Except for the alkylation reaction in the second step (40% yield) of this four-step synthesis of [b-3C-im][NTf2], others were all high yielding reactions (85-94% isolated yields). We investigated intrinsic reactivity of this and other imidazolium-based ionic liquids and found that, under strongly basic conditions (KOD in CD3OD/D2O (1:1) solution), the new ionic liquid was stable to solvent deuterium isotope exchange while the previously reported [bdmim][NTf2] and [bdmim][PF6] ionic liquids were 50% deuterium exchanged at its C-2 methyl in 30 min at ambient temperature. At the same experimental condition, the most commonly employed [bmim][PF6] ionic liquid was deuterium exchanged instantaneously at its C-2 hydrogen. In the absence of bases (CD3OD/D2O = 1:1), only [bmim][PF6] was deuterium exchanged (50% within 1 h) and other ionic liquids gave no detectable exchanges even after one week at ambient temperature. It is therefore concluded that the new [b-3C-im][NTf2] ionic liquid is far more chemically stable than previously reported [bmim][PF6], [bdmim][NTf2], and [bdmim][PF6].  相似文献   

11.
12.
We previously reported the use of imidazole as starting compound for preparing a bicyclic imidazolium ionic liquid, [b-3C-im][NTf2], with an overall 29% isolated yield in four synthetic steps. This new room temperature ionic liquid was shown to be far more chemically stable than commonly used [bmim][PF6], [bdmim][PF6], and [bdmim][NTf2]. Because of this intriguing chemical stability, it prompted us to develop a more generalized and high yielding synthesis so that molecular diversity of bicyclic ionic liquids may be explored. In this work, we amended the previous synthetic route by employing 4-chlorobutyronitrile or 5-chlorovaleronitrile as starting materials and successfully developed a five-step synthesis of a series of novel bicyclic imidazolium-based ionic liquids in 40-53% overall isolated yields. We investigated intrinsic reactivity of all bicyclic ionic liquids prepared and found that, under strongly basic conditions, among all tested ionic liquids the 5,5-membered [R-3C-im][NTf2] ionic liquids were most stable to solvent deuterium isotope exchange while the previously reported [bdmim][NTf2] ionic liquid was 50% deuterium exchanged at its C-2 methyl in 30 min at ambient temperature. Under identical condition, the commonly used [bmim][NTf2] ionic liquid was deuterium exchanged instantaneously at its C-2 hydrogen. In the absence of bases, only [bmim][PF6] was deuterium exchanged (50% within 1 h) and all other ionic liquids gave no detectable exchanges even after 25 days at ambient temperature. Moreover, both [bmim][NTf2] and [bdmim][NTf2] ionic liquids were readily methylated at C-2 position with methyl iodide under basic condition at room temperature. Under the same condition, [R-3C-im][NTf2] and [R-4C-im][NTf2] ionic liquids were completely stable and chemically inert. We envisioned that [R-3C-im][NTf2] should be well suited as solvents for organic synthesis.  相似文献   

13.
(Solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) for the binary systems: {ionic liquid (IL) N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BM4Py][TOS], or N-butyl-3-methylpyridinium tosylate [BM3Py][TOS], or N-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], or N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide [BM4Py][NTf2], or 1,4-dimethylpyridinium tosylate [M1,4Py][TOS], or 2,4,6-collidine tosylate [M2,4,6Py][TOS], or 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], or 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-hexyl-3-methylimidazolium thiocyanate [HMIM][SCN], or triethylsulphonium bis(trifluoromethylsulfonyl)imide [Et3S][NTf2] + thiophene} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 390) K. In the case of systems (pyridinium IL, or sulphonium IL + thiophene) the mutual immiscibility with an upper critical solution temperature (UCST) was detected at the very narrow and low mole fraction of the IL. For the binary systems containing (imidazolium thiocyanate IL + thiophene), the mutual immiscibility with the lower critical solution temperature (LCST) was detected at the higher mole fraction range of the IL. The basic thermal properties of the pure ILs, i.e. melting and glass-transition temperatures as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). The well-known NRTL equation has been used to correlate experimental SLE/LLE data sets.  相似文献   

14.
The room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] has various applications in the separation of a range of metal ions replacing volatile and toxic traditional organic solvents in liquid–liquid extraction systems. In this study, the RTIL [C4mim][PF6] was used to separate no-carrier-added (NCA) 109Cd from α-particle irradiated Ag target. A natural Ag foil was bombarded by 30 MeV α-particles to produce 109Cd. After the decay of all co-produced short-lived products, NCA 109Cd was separated from the bulk Ag using [C4mim][PF6] as extractant from HNO3 medium. Ammoniumpyrrolidine dithiocarbamate (APDC) was used as a complexing agent. At the optimum condition, 3 M HNO3, 0.01 M APDC in presence of [C4mim][PF6], ~99 % bulk Ag was extracted to the IL phase, leaving NCA 109Cd in the aqueous phase. The amount of Ag became negligibly small after re-extraction in the same condition. The ionic liquid was recovered by washing it with 1 M HCl.  相似文献   

15.
Absalan G  Akhond M  Sheikhian L 《Talanta》2008,77(1):407-411
In this paper, imidazolium-based ionic liquids [C4mim][PF6], [C6mim][PF6], [C8mim][PF6], [C6mim][BF4] and [C8mim][BF4] were tested as extracting solvents for removal of 3-indole butyric acid (IBA) from aqueous media with subsequent determination using HPLC. Percent extraction of IBA was strongly affected by pH of aqueous phases and the chemical structures of ionic liquids (ILs). Extraction of IBA was quantitative in the pH values lower than pKa of IBA. Considering both extraction and stripping efficiencies of IBA, [C4mim][PF6] was found to act more efficient than other studied ILs. Capacity of [C4mim][PF6] was 17.6 × 10−4 mmol IBA per 1.0 mL of IL. Ionic strength of aqueous phase and temperature had shown no serious effects on extraction efficiency of IBA. A preconcentration factor of 100 and a relative standard deviation of 1.16% were obtained. It was found that ionic liquid phase was reusable almost five times for extraction/stripping purposes. 3-Indole acetic acid showed interferential effect in the extraction step. In order to assess the applicability of the method, extraction and stripping of IBA from pea plants and some other samples were studied.  相似文献   

16.
In this research, a novel microextraction technique based on ionic liquids (ILs) termed in situ solvent formation microextraction (ISFME) is developed. In this method, small amount of sodium hexafluorophosphate (NaPF6, as an ion-pairing agent) was added to the sample solution containing very small amount of 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF4], as hydrophilic IL). A cloudy solution was formed as a result of formation of fine droplets of 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6]. After centrifuging, the fine droplets of the extractant phase settled to the bottom of the conical-bottom glass centrifuge tube.ISFME is a simple and rapid method for extraction and preconcentration of metal ions from water samples and can be applied for the sample solutions containing very high concentrations of salt. Furthermore, this technique is much safer in comparison with the organic solvent extraction.Reliability of the introduced methodology was evaluated by analyzing water reference material. ISFME was successfully applied to determining mercury (II) in several real water samples. Michler thioketone (TMK) was chosen as a complexing agent. Analysis was carried out using spectrophotometric detection method. Type and amount of IL, temperature and the other parameters were optimized. Under the optimum conditions, the limit of detection (LOD) was 0.7 ng mL−1 and the relative standard deviation (R.S.D.) was 1.94% for 40 ng mL−1 mercury.  相似文献   

17.
Estimates of the internal pressure ( U/ V) T of the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and 1-methyl-3-octylimidazolium tetrafluoroborate [OMIM][BF4] were made from experimentally determined densities and speeds of sound in the temperature range 283.15 to 343.15 K. Values ( U/ V) T for all the ILs studied are higher than those of water and molecular organic liquids. We also measured the refractive indices n D in the temperature range 288.15 to 343.15 K and estimated the molar refraction R M. Refractive indices of ILs were also higher than those of normal organic liquids but were comparable to those of long hydrocarbon chain organic solvents.  相似文献   

18.
Synthesis of new ionic liquids (ILs) viz. 1-butyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [BCN3Py][NTf2], 1-hexyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN3Py][NTf2], 1-hexyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN4Py][NTf2], and 1-octyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [OCN3Py][NTf2] were performed. The specific basic characterization of new compounds by NMR spectra, elementary analysis, water content and glass transition temperature as well as melting temperature, enthalpy of fusion and decomposition of compounds TG/DTA determined by the differential scanning calorimetry, DSC is presented. The heat capacity was measured at three temperatures (298.15, 323.15, and 353.15) K and at pressure 0.1 MPa. The effect of temperature on the density and viscosity is reported over the temperature range from (293.15 to 363.15) K and at 0.1 MPa. The density and viscosity correlation for these systems was provided by an empirical polynomial. From the density–temperature dependence, the isothermal expansion coefficient (volume expansivity), α, was calculated. The surface tension of pure ionic liquids was measured at 0.1 MPa at five temperatures (298.15, 308.15, 318.15, 328.15, and 338.15) K. The surface thermodynamic functions such as surface entropy and enthalpy, critical temperatures according to the Eötvös and Guggenheim definition and the total surface energy of the ILs studied were derived from the temperature dependence of the surface tension values. The parachor and speed of sound for pure ionic liquids were described within a range of temperature from (298.15 to 338.15) K. A qualitative analysis on these quantities in terms of molecular interactions is reported.  相似文献   

19.
《合成通讯》2013,43(21):3777-3780
Abstract

The room temperature ionic liquid [bmim][PF6], namely 1-butyl-3-methyl-imidazolium hexafluorophosphate, is used as an alternative solvent to classic solvents for the synthesis of a series of N-aryl phthalimides in good to excellent yields.  相似文献   

20.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号