首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The H2-NH(X) van der Waals complex has been examined using ab initio theory and detected via fluorescence excitation spectroscopy of the A(3)Pi-X(3)Sigma(-) transition. Electronic structure calculations show that the minimum energy geometry corresponds to collinear H2-NH(X), with a well depth of D(e)=116 cm(-1). The potential-energy surface supports a secondary minimum for a T-shaped geometry, where the H atom of NH points towards the middle of the H2 bond (C(2v) point group). For this geometry the well depth is 73 cm(-1). The laser excitation spectra for the complex show transitions to the H2+NH(A) dissociative continuum. The onset of the continuum establishes a binding energy of D(0)=32+/-2 cm(-1) for H2-NH(X). The fluorescence from bound levels of H2-NH(A) was not detected, most probably due to the rapid reactive decay [H2-NH(A)-->H+NH2]. The complex appears to be a promising candidate for studies of the photoinitiated H2+NH abstraction reaction under conditions were the reactants are prealigned by the van der Waals forces.  相似文献   

2.
The van der Waals vibrational states and the structure of the vibronic spectrum of s-tetrazine-argon complex have been studied by the ab initio methods. The potential-energy surface of the ground S(0) electronic state of the complex has been constructed by fitting the analytical many-body expansion to a large set of the interaction energy values computed using the second-order M?ller-Plesset perturbation theory combined with the standard aug-cc-pVDZ basis set. The equilibrium structure of the complex found is that with argon located above the tetrazine ring at a distance of 3.394 A. The calculated dissociation energy of 354 cm(-1) is compatible with the experiment. The van der Waals energy spectrum calculated from the potential-energy surface is explained analyzing a correlation with a simpler energy spectrum of benzene-argon. A new assignment of the S(0)-S(1) vibronic spectrum is proposed on the basis of the rigorous selection rules, vibrational energy levels in S(0) and S(1) states and vibronic transition intensities calculated from the electronic transition dipole moment surfaces.  相似文献   

3.
The reaction pathway for Ca(4s3d 1D2)+CH4-->CaH(X 2Sigma+)+CH3 has been investigated by using a pump-probe technique in combination with potential-energy surface (PES) calculations. The nascent product distributions of CaH have been characterized with Boltzmann rotational temperatures of 1013+/-102 and 834+/-70 K for the v=0 and 1 levels, respectively, and a Boltzmann vibrational temperature of 1313+/-173 K. The rotational and vibrational energy partitions in CaH have been estimated to be 461+/-45 and 252+/-15 cm(-1), respectively. According to the PES calculations, the pathway favors an insertion mechanism. Ca(3 1D2) approaches CH4 along an attractive potential surface in a C2v (or Cs) symmetry and then the collision complex undergoes nonadiabatic transition to the reactive ground-state surface. An Arrhenius plot shows a potential-energy requirement of 2695+/-149 cm(-1), which accounts for the endothermicity of 2930 cm(-1) for the reaction scheme. The Ca-C bond distance in the transition state structure is short enough to allow for tight orbital overlap between CaH and CH3. The strong coupling between the moieties renders the energy transfer sufficient from CaH into the CH3 radical. As compared to the Ca(4 1P1) reaction, the dissociation lifetime of the intermediate complex with less excess energy is prolonged so as to cause much less vibrational energy disposal into CaH.  相似文献   

4.
The three lowest (1(2)A', 2(2)A', and 1(2)A") potential-energy surfaces of the C2Cl radical, correlating at linear geometries with 2Sigma+ and 2Pi states, have been studied ab initio using a large basis set and multireference configuration-interaction techniques. The electronic ground state is confirmed to be bent with a very low barrier to linearity, due to the strong nonadiabatic electronic interactions taking place in this system. The rovibronic energy levels of the 12C12C35Cl isotopomer and the absolute absorption intensities at a temperature of 5 K have been calculated, to an upper limit of 2000 cm(-1), using diabatic potential-energy and dipole moment surfaces and a recently developed variational method. The resulting vibronic states arise from a strong mixture of all the three electronic components and their assignments are intrinsically ambiguous.  相似文献   

5.
The B1A1 electronic state of silylene (SiH2) is the second excited singlet state of the molecule and, like the analogous c state of methylene (CH2), it is quasilinear with symmetry 1sigmag+ at linearity. This state dissociates to Si(1D) + H2(1sigmag+). At equilibrium, the B state of SiH2 has an energy that we calculate to be 0.71 eV above that of the dissociation products. However, there is a barrier to dissociation that allows quasibound rovibrational levels to occur, and some have been observed recently [Y. Muramoto et al., J. Chem. Phys. 122, 154302 (2005)]. Starting with our analytical ab initio potential-energy surface, we adjusted it in a fitting to the experimental term values in order to determine the optimum potential-energy function in the bound region. This potential has a C2v equilibrium structure with a SiH bond length of 1.459 angstroms and a bond angle of 165.4 degrees; the barrier to linearity is only 129 cm(-1). Using the optimized potential-energy surface we calculate B-state term values, and using our calculated y and z dipole moment surfaces, we simulate the rotation-vibration spectrum of the state in order to assist in the detection of the matrix isolation spectrum.  相似文献   

6.
Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [ ibid. 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3 x 10(-5) A and 0.02 degrees for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is r(e) (BO)=0.957 82 A and theta e (BO)=104.48(5) degrees , respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2 (16)O is r(e) (ad)=0.957 85 A and theta e (ad)=104.50(0) degrees , respectively, while those of D2 (16)O are r(e) (ad)=0.957 83 A and theta e (ad)=104.49(0) degrees . Pure ab initio prediction of J=1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002 cm(-1) for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05 cm(-1) (or the lower ones to better than 0.0035 cm(-1)) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The small residual deviations in the effective rotational constants are due to centrifugal distortion, electronic, and non-Born-Oppenheimer effects. The spectroscopic (nonadiabatic) equilibrium structural parameters of H2 16O, obtained from experimentally determined A'0 and B'0 rotational constants corrected empirically to obtain equilibrium rotational constants, are r(e) (sp)=0.957 77 A and theta e (sp)=104.48 degrees .  相似文献   

7.
Bound energy levels and properties of the Cl(2P)-HF complex were obtained from full three-dimensional (3D) calculations, with the use of the ab initio computed diabatic potential surfaces from the preceding paper and the inclusion of spin-orbit coupling. For a better understanding of the dynamics of this complex we also computed a 2D model in which the HF bond length r was frozen at the vibrationally averaged values r0 and r1 and a 2 + 1D model in which the 3D potentials were averaged over the v(HF) = 0 and v(HF) = 1 vibrational wave functions of free HF. Also 1D calculations were made in which both r and the Cl-HF distance R were frozen. The complex is found to have the linear hydrogen bonded Cl-HF structure, with ground-state quantum numbers J = 3/2 for the overall angular momentum and /omega/ = 3/2 for its projection on the intermolecular axis R. The binding energy is D0 = 432.25 cm(-1) for v(HF) = 0 and D0 = 497.21 cm(-1) for v(HF) = 1. Bending modes with /omega/ = 1/2 and /omega/ = 5/2 are split by the Renner-Teller effect, since the electronic ground state is a degenerate 2pi state. A series of intermolecular (R) stretch modes was identified. Rotational constants and e-f parity splittings were extracted from the levels computed for J = 1/2 to 7/2. The computed red shift of the HF stretch frequency of 64.96 cm(-1) and the 35Cl-37Cl isotope shift of 0.033 cm(-1) are in good agreement with the values of 68.77 and 0.035 cm(-1) obtained from the recent experiment of Merritt et al. (Phys. Chem. Chem. Phys. 2005, 7, 67), after correction for the effect of the He nanodroplet matrix in which they were measured.  相似文献   

8.
New high-resolution visible emission spectra of the MgH molecule have been recorded with high signal-to-noise ratios using a Fourier transform spectrometer. Many bands of the A 2Pi-->X 2Sigma+ and B' 2Sigma+-->X 2Sigma+ electronic transitions of 24MgH were analyzed; the new data span the v' = 0-3 levels of the A 2Pi and B'2Sigma+ excited states and the v'=0-11 levels of the X 2Sigma+ ground electronic state. The vibration-rotation energy levels of the perturbed A 2Pi and B' 2Sigma+ states were fitted as individual term values, while those of the X 2Sigma+ ground state were fitted using the direct-potential-fit approach. A new analytic potential energy function that imposes the theoretically correct attractive potential at long-range, and a radial Hamiltonian that includes the spin-rotation interaction were employed, and a significantly improved value for the ground state dissociation energy of MgH was obtained. The v'=11 level of the X 2Sigma+ ground electronic state was found to be the highest bound vibrational level of 24MgH, lying only about 13 cm(-1) below the dissociation asymptote. The equilibrium dissociation energy for the X 2Sigma+ ground state of 24MgH has been determined to be De=11104.7+/-0.5 cm(-1) (1.37681+/-0.00006 eV), whereas the zero-point energy (v'=0) is 739.11+/-0.01 cm(-1). The zero-point dissociation energy is therefore D0=10365.6+/-0.5 cm(-1) (1.28517+/-0.00006 eV). The uncertainty in the new experimental dissociation energy of MgH is more than 2 orders of magnitude smaller than that for the best value available in the literature. MgH is now the only hydride molecule other than H2 itself for which all bound vibrational levels of the ground electronic state are observed experimentally and for which the dissociation energy is determined with subwavenumber accuracy.  相似文献   

9.
We report state-to-state and overall thermal rate constants for the isotope exchange reaction D((2)S)+OH((2)Pi)-->OD((2)Pi)+H((2)S) for 0 K相似文献   

10.
We investigated the dynamics of isomerization and multi-channel dissociation of propenal (CH(2)CHCHO), methyl ketene (CH(3)CHCO), hydroxyl propadiene (CH(2)CH(2)CHOH), and hydroxyl cyclopropene (cyclic-C(3)H(3)-OH) in the ground potential-energy surface using quantum-chemical calculations. Optimized structures and vibrational frequencies of molecular species were computed with method B3LYP∕6-311G(d,p). Total energies of molecules at optimized structures were computed at the CCSD(T)∕6-311+G(3df,2p) level of theory. We established the potential-energy surface for decomposition to CH(2)CHCO + H, CH(2)CH + HCO, CH(2)CH(2)∕CH(3)CH + CO, CHCH∕CH(2)C + H(2)CO, CHCCHO∕CH(2)CCO + H(2), CHCH + CO + H(2), CH(3) + HCCO, CH(2)CCH + OH, and CH(2)CC∕cyclic-C(3)H(2) + H(2)O. Microcanonical rate coefficients of various reactions of trans-propenal with internal energies 148 and 182 kcal mol(-1) were calculated using Rice-Ramsperger-Kassel-Marcus and Variational transition state theories. Product branching ratios were derivable using numerical integration of kinetic master equations and the steady-state approximation. The concerted three-body dissociation of trans-propenal to fragments C(2)H(2) + CO + H(2) is the prevailing channel in present calculations. In contrast, C(3)H(3)O + H, C(2)H(3) + HCO and C(2)H(4) + CO were identified as major channels in the photolysis of trans-propenal. The discrepancy between calculations and experiments in product branching ratios indicates that the three major photodissociation channels occur mainly on an excited potential-energy surface whereas the other channels occur mainly on the ground potential-energy surface. This work provides profound insight in the mechanisms of isomerization and multichannel dissociation of the system C(3)H(4)O.  相似文献   

11.
We report inelastic neutron scattering (INS) studies on a series of Mn(12) derivatives, [Mn(12)O(12)(O2CC6F5)16(H2O)4]z, in which the number of unpaired electrons in the cluster is varied. We investigated three oxidation levels: z = 0 for the neutral complex, z = -1 for the one-electron reduced species and z = -2 for the two-electron reduced complex. For z = 0, the ground state is S = 10 as in the prototypical Mn12-acetate. For z = -1, we have S = 19/2, and for z = - 2, an S = 10 ground state is retrieved. INS studies show that the axial zero-field splitting parameter D is strongly suppressed upon successive electron reduction: D = -0.45 cm(-1) (z = 0), D = -0.35 cm(-1) (z = -1), and D approximately -0.26 cm(-1) (z = -2). Each electron reduction step is directly correlated to the conversion of one anisotropic (Jahn-Teller distorted) Mn3+ (S = 2) to one nearly isotropic Mn2+ (S = 5/2).  相似文献   

12.
trans-Hexatriene-1-(13)C(1) (tHTE-1-(13)C(1)) has been synthesized, and its high-resolution (0.0015 cm(-1)) infrared spectrum has been recorded. The rotational structure in the C-type bands for ν(26) at 1011 cm(-1) and ν(30) at 894 cm(-1) has been analyzed. To the 1458 ground state combination differences from these bands, ground state rotational constants were fitted to a Watson-type Hamiltonian to give A(0) = 0.8728202(9), B(0) = 0.0435868(4), and C(0) = 0.0415314(2) cm(-1). Upper state rotational constants for the ν(30) band were also fitted. Predictions of the ground state rotational constants for tHTE-1-(13)C(1) from a B3LYP/cc-pVTZ model with scale factors based on the normal species were in excellent agreement with observations. Similar good agreement was found between predicted and observed ground state rotational constants for the three (13)C(1) isotopologues of cis-hexatriene, as determined from microwave spectroscopy. Equilibrium rotational constants for tHTE and its three (13)C(1) isotopologues, of which two were predicted, were used to find a semiexperimental equilibrium structure for the C(6) backbone of tHTE. This structure shows increased structural effects of π-electron delocalization in comparison with butadiene and some differences from the cis isomer of HTE. Structures predicted with the MP2/cc-pVTZ model are also compared.  相似文献   

13.
We present an ab initio study of cold (4)He + ThO((1)Σ(+)) collisions based on an accurate potential energy surface (PES) evaluated by the coupled cluster method with single, double, and noniterative triple excitations using an extended basis set augmented by bond functions. Variational calculations of rovibrational energy levels show that the (4)He-ThO van der Waals complex has a binding energy of 10.9 cm(-1) in its ground J = 0 rotational state. The calculated energy levels are used to obtain the temperature dependence of the chemical equilibrium constant for the formation of the He-ThO complex. We find that complex formation is thermodynamically favored at temperatures below 1 K and predict the maximum abundance of free ground-state ThO(v = 0, j = 0) molecules between 2 and 3 K. The calculated cross sections for momentum transfer in elastic He + ThO collisions display a rich resonance structure below 5 cm(-1) and decline monotonically above this collision energy. The cross sections for rotational relaxation accompanied by momentum transfer decline abruptly to zero at low collision energies (<0.1 cm(-1)). We find that Stark relaxation in He + ThO collisions can be enhanced by applying an external dc electric field of less than 100 kV∕cm. Finally, we present calculations of thermally averaged diffusion cross sections for ThO in He gas, and find these to be insensitive to small variations of the PES at temperatures above 1 K.  相似文献   

14.
The CH3-HCN and CD3-HCN radical complexes have been formed in helium nanodroplets by sequential pickup of a CH3 (CD3) radical and a HCN molecule and have been studied by high-resolution infrared laser spectroscopy. The complexes have a hydrogen-bonded structure with C3v symmetry, as inferred from the analysis of their rotationally resolved nu = 1 <-- 0 H-CN vibrational bands. The A rotational constants of the complexes are found to change significantly upon vibrational excitation of the C-H stretch of HCN within the complex, DeltaA = A'-A" = -0.04 cm(-1) (for CH3-HCN), whereas the B rotational constants are found to be 2.9 times smaller than that predicted by theory. The reduction in B can be attributed to the effects of helium solvation, whereas the large DeltaA is found to be a sensitive probe of the vibrational averaging dynamics of such weakly bound systems. The complex has a permanent electric dipole moment of 3.1 +/- 0.2 D, as measured by Stark spectroscopy. A vibration-vibration resonance is observed to couple the excited C-H stretching vibration of HCN within the complex to the lower-frequency C-H stretches of the methyl radical. Deuteration of the methyl radical was used to detune these levels from resonance, increasing the lifetime of the complex by a factor of 2. Ab initio calculations for the energies and molecular parameters of the stationary points on the CN+CH4 --> HCN+CH3 potential-energy surface are also presented.  相似文献   

15.
UV laser-induced fluorescence and IR-UV fluorescence depletion studies have been used to characterize the intermolecular levels of the CN-Ar complex in the excited state correlating with CN B (2)Σ(+) + Ar. Additional CN-Ar features are identified to lower wavenumber than reported previously. Fluorescence depletion spectra are recorded to confirm that these CN-Ar features and other higher energy features in the B-X spectrum originate from a common ground state level. The UV depletion is induced by IR excitation of CN-Ar from the ground state zero-point level to a hindered internal rotor state (n(K) = 1(1)) in the CN overtone region. The lowest energy feature in the B-X spectrum at 25,714.1 cm(-1) is assigned as a transition to the zero-point level of the B state and also yields its binding energy, D(0) = 186(2) cm(-1), which is in excellent accord with theoretical predictions. The next feature approximately 40 cm(-1) higher is attributed to overlapping transitions to intermolecular levels with bend (v(b)(K)=1(1)) or stretch (v(s) = 1) excitation. Yet higher features (previously reported) are also assigned, based on their transition type and wavenumber, which are consistent with the intermolecular energy level pattern computed theoretically. Finally, the intensity profile of the lowest energy features in the B-X spectrum reflects the predicted change in the CN (B (2)Σ(+), X (2)Σ(+)) + Ar potentials upon electronic excitation from a weakly anisotropic potential about the linear N≡C-Ar configuration in the ground state to a more strongly bound linear C≡N-Ar structure in the excited B electronic state.  相似文献   

16.
The equilibrium structure and the three-dimensional potential energy surface of the Mg-HF van der Waals complex in its ground electronic state have been determined from accurate ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with the basis sets of triple- through quintuple-zeta quality. The core-electron correlation, high-order valence-electron correlation, and scalar relativistic effects were investigated. The Mg-HF complex was confirmed to be linear at equilibrium, with a vibrationless dissociation energy (into Mg and HF) D(e) of 280 cm(-1). The vibration-rotation energy levels of two isotopologues, (24)Mg-HF and (24)Mg-DF, were predicted using the variational method. The predicted spectroscopic constants can be useful in a further analysis of high-resolution vibration-rotation spectra of the Mg-HF complex.  相似文献   

17.
The A-X electronic transition of C3-Ar, near 405 nm, has been studied by both laser-induced fluorescence and wavelength-resolved emission techniques. Emission spectra have been recorded from 14 vibrational levels of the A state of C3-Ar; these spectra consist of progressions in the ground state v2 and v4 vibrations (the in- and out-of-plane C3-bending motions, respectively). With increasing bending excitation, these ground state levels shift progressively downwards compared to those of free C3, indicating that the van der Waals complexes are becoming more tightly bound. The level structure of the two vibrations of C3-Ar has been fitted to a perturbed harmonic oscillator model, where the potential function has the form V = V1r cos theta + V2r2 cos 2theta (r is the amplitude of the C3-bending motion and theta gives the orientation of the rare gas atom relative to the plane of the bent C3 molecule). Ab initio calculations have been carried out for C3-Ar at the coupled-cluster singles, doubles (and triples)/correlation consistent polarization valence quadruple-zeta level. They predict that the C3-Ar complex is nearly T shaped at equilibrium, and that as the C3 molecule bends away from the linear configuration, the preferred orientation is "arrow" shaped. From the results of the best fit to the model and the emission spectral intensities, the relative orientation of the out-of-plane pi electron of the A-state complex and the Ar atom has been estimated. No bands of the Ar complex were found near the C3, A-X, (0,0) band, consistent with the fact that the A 1Piu, upsilon = 0 level of free C3 is strongly perturbed by triplet levels. In the excitation spectra of the Ar complex, the bands with upsilonb' > 0 show redshifts of about 16-36 cm(-1) compared to those of free C3, indicating that the A-state complex in these levels is more tightly bonded than the X-state complex.  相似文献   

18.
The singlet electronic ground state isomers, X (1)Sigma(g) (+) (AlOAl D(infinityh)) and X (1)Sigma(+) (AlAlO C(infinitynu)), of dialuminum monoxide have been systematically investigated using ab initio electronic structure theory. The equilibrium structures and physical properties for the two molecules have been predicted employing self-consistent field (SCF) configuration interaction with single and double excitations (CISD), multireference CISD (MRCISD), coupled cluster with single and double excitations (CCSD), CCSD with perturbative triples [CCSD(T)], CCSD with iterative partial triple excitations (CCSDT-3 and CC3), and full triples (CCSDT) coupled cluster methods. Four correlation consistent polarized valence (cc-pVXZ) type basis sets were used. The AlAlO system is rather challenging theoretically. The two isomers are confirmed to have linear structures at all levels of theory. The symmetric isomer AlOAl is predicted to lie 81.9 kcal mol(-1) below the asymmetric isomer AlAlO at the cc-pV(Q+d)Z CCSD(T) level of theory. The predicted harmonic vibrational frequencies for the X (1)Sigma(g) (+) AlOAl molecule, omega(1)=517 cm(-1), omega(2)=95 cm(-1), and omega(3)=1014 cm(-1), are in good agreement with experimental values. The harmonic vibrational frequencies for the X (1)Sigma(+) AlAlO structure, omega(1)=1042 cm(-1), omega(2)=73 cm(-1), and omega(3)=253 cm(-1), presently have no experimental values with which to be compared. With the same methods the barrier heights for the isomerization AlOAl-->AlAlO and AlAlO-->AlOAl reactions were predicted to be 84.3 and 2.4 kcal mol(-1), respectively. The dissociation energies D(0) for AlOAl (X (1)Sigma(g) (+)) and AlAlO (X (1)Sigma(+))-->AlO (X (2)Sigma(+))+Al ((2)P) were determined to be 130.8 and 48.9 kcal mol(-1), respectively. Thus, both symmetric AlOAl (X (1)Sigma(g) (+)) and asymmetric AlAlO (X (1)Sigma(+)) isomers are expected to be thermodynamically stable with respect to the dissociation into AlO (X (2)Sigma(+)) + Al ((2)P) and kinetically stable for the isomerization reaction (AlAlO-->AlOAl) at sufficiently low temperatures.  相似文献   

19.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

20.
Inelastic neutron scattering (INS) spectra are presented for chromium(II) Tutton salts, as a function of the temperature and pressure. Transitions are observed between the levels of the 5Ag (Ci) ground term and the data modeled with a conventional S = 2 spin Hamiltonian. At 10 K and ambient pressure, the zero-field-splitting parameters of the ammonium salt, (ND4)2Cr(D2O)6(SO4)2, are determined as D = -2.431(4) cm(-1) and E = 0.091(4) cm(-1), evolving to D = -2.517(4) cm(-1) and E = 0.127(5) cm(-1) upon application of 7.5(1.0) kbar of quasi-hydrostatic pressure. By contrast, the change in the INS spectrum of the rubidium salt in this pressure range is comparitively minor. The results are interpreted using a 5Ee vibronic-coupling Hamiltonian, in which low-symmetry strain, perturbing the adiabatic potential-energy surface, is pressure-dependent. It is argued that, for the ammonium salt, the change with pressure of the anisotropic strain impinging upon the [Cr(D2O)6]2+ cation is sufficient to cause a switch of the long and intermediate Cr-OD2 bonds, with respect to the crystallographic axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号