首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have observed infrared spectra of the CF(3)I dimer produced in a supersonic jet by matrix-isolation Fourier transform infrared spectroscopy and infrared cavity ring-down (IR-CRD) spectroscopy. In the matrix-isolation experiments, the dimer was isolated in an Ar matrix by the pulse-deposition method. The recorded spectral range covers the symmetric (nu(1)) and doubly degenerate (nu(4)) C-F stretching regions. From the concentration dependence of the matrix-isolation spectra we have assigned one dimer band for each fundamental region. It was not easy to identify the dimer band for the nu(4) band because of the multiplet feature of the monomeric nu(4) band caused by the site symmetry breaking. The spectra of (CF(3)I)(2) in the nu(4) band region were thus also measured in the gas phase by IR-CRD spectroscopy, where we detected two dimer bands. Comparing the observed band positions with the results of quantum chemical calculations, we have assigned the observed dimer bands to the head-to-head isomer. The structure of (CF(3)I)(2) and its photochemical implications are discussed, in comparison with methyl iodide dimer reported previously [Ito et al., Chem. Phys. Lett. 343, 185 (2001)].  相似文献   

2.
The near infrared spectra (3800-10 500 cm(-1) of phenol-OH and phenol-OD are studied in carbon tetrachloride solution. The bandwidth of the v(OH) and v(OD) stretching vibrations increases with the vibrational quantum number in contrast to results obtained by nonresonant ionization spectroscopy (S.I. Ishiuchi et al., Chem. Phys. Lett. 283 (1998) 243). The bandwidth of the v(CH) vibrations obtained by a deconvolution procedure also increases with the frequencies associated with the vibrational transitions. The anharmonicity of the v(CH) vibrations ranges between 51 and 72 cm(-1). Numerous absorptions are observed in the near infrared spectra. These absorptions are tentatively assigned to combinations involving the fundamental transitions which have been recently calculated at different levels of theory (D. Michalska et al., J. Phys. Chem. 100 (1996) 17786). The experimental, theoretical and harmonic v(OH) and vi(CH) frequencies are compared.  相似文献   

3.
Detailed quasiclassical trajectory calculations of the reaction H+CH4(nu3 = 0,1)-->CH3 + H2 using a slightly updated version of a recent ab initio-based CH5 potential energy surface [X. Zhang et al., J. Chem. Phys. 124, 021104 (2006)] are reported. The reaction cross sections are calculated at initial relative translational energies of 1.52, 1.85, and 2.20 eV in order to make direct comparison with experiment. The relative reaction cross section enhancement ratio due to the excitation of the C-H antisymmetric stretch varies from 2.2 to 3.0 over this energy range, in good agreement with the experimental result of 3.0 +/- 1.5 [J. P. Camden et al., J. Chem. Phys. 123, 134301 (2005)]. The laboratory-frame speed and center-of-mass angular distributions of CH3 are calculated as are the vibrational and rotational distributions of H2 and CH3. We confirm that this reaction occurs with a combination of stripping and rebound mechanisms by presenting the impact parameter dependence of these distributions and also by direct examination of trajectories.  相似文献   

4.
Pure rotational transitions in the ground state for Ar-OH and Ar-OD [Y. Ohshima et al., J. Chem. Phys. 95, 7001 (1991) and Y. Endo et al., Faraday Discuss. 97, 341 (1994)], those in the excited states of the OH vibration, nu(s)=1 and 2, observed by Fourier-transform microwave spectroscopy in the present study, rotation-vibration transitions observed by infrared-ultraviolet double-resonance spectroscopy [K. M. Beck et al., Chem. Phys. Lett. 162, 203 (1989) and R. T. Bonn et al., J. Chem. Phys. 112, 4942 (2000)], and the P-level structure observed by stimulated emission pumping spectroscopy [M. T. Berry et al., Chem. Phys. Lett. 178, 301 (1991)] have been simultaneously analyzed to determine the potential energy surface of Ar-OH in the ground state. A Schrodinger equation, considering all the freedom of motions for an atom-diatom system in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational energy levels using the discrete variable representation method. A three-dimensional potential energy surface is determined by a least-squares fitting. In the analysis the potential parameters, obtained by ab initio calculations at the RCCSD(T) level of theory with a set of basis functions of aug-cc-pVTZ and midbond functions, are used as initial values. The determined intermolecular potential energy surface and its dependence on the OH monomer bond length are compared with those of an isovalent radical complex, Ar-SH.  相似文献   

5.
Thermal motion of CH4+ is investigated by performing an ab initio molecular dynamics method with the second-order M?ller-Plesset (MP2)/6-311G** force field. In the trajectories obtained at 400 K, we have observed rapid interconversion behavior of the geometrical parameters of CH4+ with the frequency of 0.6/ps, where the C-H pair forming the small angle around 55 degrees is switched to another pair on subpicosecond time scale. The switching patterns are found to be classified into the following two types. Type 1: one C-H of the small angled C-H pair is switched to one C-H of the other C-H pair. Type 2: the small angled C-H pair is switched to the other C-H pair, which has been newly observed in the present ab initio MD calculation. The four C-H bonds of CH4+ are characterized by the long and short C-H bonds in a time region of the trajectories, and also for the time-evolution of C-H bonds such interconversion behavior is observed. The switching patterns of the geometrical parameters are compared with those in the interconversion scheme between six equivalent C2v symmetry structures of CH4+ [Paddon-Row, M. N. et al., J Am Chem Soc 1985, 107, 7696]. We have also investigated the electronic energy fluctuation due to thermal motion of CH4+. The standard deviation of total electronic energy at 400 K is evaluated to be 1.2 kcal/mol.  相似文献   

6.
The direct infrared (IR) absorption spectrum of benzene dimer formed in a free-jet expansion was recorded in the 3.3 μm region for the first time. This has led to the observation of the C-H stretching fundamental mode ν(13) (B(1u)), which is both IR and Raman forbidden in the monomer. Moreover, the IR forbidden and Raman allowed ν(7) (E(2g)) mode has been observed as well. These two modes were found to be red-shifted along with the IR allowed ν(20) (E(1u)) mode, as previously reported by Erlekam et al. [Erlekam; Frankowski; Meijer; Gert von Helden J. Chem. Phys.2006, 124, 171101], using ion-dip spectroscopy, contrary to the blue-shift predicted earlier by theoretical studies. The observation of the ν(13) band indicates that the symmetry is reduced in the dimer, confirming the T-shaped structure observed by Erlekam et al. Our experimental results have not provided any direct evidence for the presence of the parallel displaced geometry, the main objective of the present work, as predicted by theoretical calculations.  相似文献   

7.
Infrared spectra of jet-cooled CH(3)OD and CH(3)OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH(3)OH only). Twagirayezu et al. reported the analysis of ν(3) symmetric CH stretch region (2750-2900 cm(-1); Twagirayezu et al. J. Phys. Chem. A 2010, 114, 6818), and the present work addresses the more complicated higher frequency region (2900-3020 cm(-1)) containing the two asymmetric CH stretches (ν(2) and ν(9)). The additional complications include a higher density of coupled states, more extensive mixing, and evidence for Coriolis as well as anharmonic coupling. The overall observed spectra contain 17 interacting vibrational bands for CH(3)OD and 28 for CH(3)OH. The sign and magnitude of the torsional tunneling splittings are deduced for three CH stretch fundamentals (ν(3), ν(2), ν(9)) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. Above 2900 cm(-1), the available doorway states are CH bending states, but below, the doorway states also involve OH bending. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (~200 fs) initial decay of the bright state followed by a second, slower redistribution (about 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases.  相似文献   

8.
《Chemical physics》2003,286(2-3):337-345
Infrared spectra of methyl iodide clusters produced in a supersonic jet have been observed in the C–H stretching region by cavity ring-down spectroscopy. The dependence of the spectra on the mixing ratio of CH3I versus He and on the stagnation pressure has led to a tentative assignment of the absorption peaks to trimer up to pentamer, based on our previous study with matrix isolation technique (Chem. Phys. Lett. 343 (2001) 185). Ab initio calculations at the MP2 level for the trimer and tetramer have shown that two stable isomers exist for the tetramer whereas only one isomer is found to be stable for the trimer. The tentative assignment of the observed spectra has been in qualitative agreement with the results of the calculations. The structure of each isomer and its photochemical relevance are discussed.  相似文献   

9.
CW-cavity ring down spectroscopy was used to record in a free jet expansion the spectrum of the absorption band in ((12)C(2)H(2))(2) with origin at 6547.6 cm(-1). It is a perpendicular band and corresponds to 2CH excitation in the hat unit of the T-shaped dimer. Calibration (better than ±1 × 10(-3) cm(-1) accuracy) and ring-down time (130 μs) were improved compared to a previous contribution (Didriche et al. Mol. Phys., 2010, 108, 2158-2164). A line-by-line analysis was achieved. Three series of lines were identified involving levels with A(1)(+), E(+) and B(1)(+) ground state tunneling symmetries, confirming the spectral and symmetry analyses reported in the literature for the 1CH excitation band (Fraser et al. J. Chem. Phys., 1988, 89, 6028-6045). 164 vibration-rotation-tunneling lines were assigned in the K(a)' - K(a)' = 2 - 3, 0 - 1, 2 - 1 and 4 - 3 sub-bands and effective rigid rotor vibration-rotation constants were obtained by simultaneously fitting 1CH and 2CH lines with the same symmetry series. Perturbations affecting the K(a) stacks, in particular, are reported. The tunneling frequency in 2CH is estimated to be ν(tunn)(2CH) = 270 MHz for the K(a) = 0 stack. The rotational temperature is determined to be 23 K from relative line intensities and the lifetime of the dimer in the 2CH hat state is estimated to be 1 ns from individual line widths.  相似文献   

10.
High-resolution infrared laser spectroscopy is used to study the CH3...HF and CD3...HF radical complexes, corresponding to the exit-channel complex in the F + CH4 --> HF + CH3 reaction. The complexes are formed in helium nanodroplets by sequential pickup of a methyl radical and a HF molecule. The rotationally resolved spectra presented here correspond to the fundamental v = 1 <-- 0 H-F vibrational band, the analysis of which reveals a complex with C(3v) symmetry. The vibrational band origin for the CH3...HF complex (3797.00 cm(-1)) is significantly redshifted from that of the HF monomer (3959.19 cm(-1)), consistent with the hydrogen-bonded structure predicted by theory [E. Ya. Misochko et al., J. Am. Chem. Soc. 117, 11997 (1995)] and suggested by previous matrix isolation experiments [M. E. Jacox, Chem. Phys. 42, 133 (1979)]. The permanent electric dipole moment of this complex is experimentally determined by Stark spectroscopy to be 2.4+/-0.3 D. The wide amplitude zero-point bending motion of this complex is revealed by the vibrational dependence of the A rotational constant. A sixfold reduction in the line broadening associated with the H-F vibrational mode is observed in going from CH3...HF to CD3...HF. The results suggest that fast relaxation in the former case results from near-resonant intermolecular vibration-vibration (V-V) energy transfer. Ab initio calculations are also reported (at the MP2 level) for the various stationary points on the F + CH4 surface, including geometry optimizations and vibrational frequency calculations for CH3...HF.  相似文献   

11.
The high-resolution infrared spectrum of the weakly-bound dimer (N(2)O)(2) is studied using a rapid-scan tunable-diode laser spectrometer to probe a pulsed supersonic jet expansion. An observed band with c-type rotational structure is assigned as a combination of the intramolecular N(2)O nu(1) stretching vibration and the intermolecular out-of-plane dimer torsional vibration, with a vibrational origin at 2249.360 cm(-1). The resulting torsional frequency for the nonpolar N(2)O dimer is about 21.5 cm(-1). The present rotational analysis is completely different from that reported previously for the same band [Hecker et al., Phys. Chem. Chem. Phys., 2003, 5, 2333], which gave a band origin some 1.53 cm(-1) lower.  相似文献   

12.
First high-resolution IR spectra of jet-cooled vinyl radical in the C-H stretch region are reported. Detailed spectral assignments and least squares fits to an A-reduction Watson asymmetric top Hamiltonian yield rotational constants and vibrational origins for three A-type bands, assigned to single quantum excitation of the symmetric CH(2) stretch. Two of the observed bands arise definitively from ground state vinyl radical, as rigorously confirmed by combination differences predicted from previous midinfrared CH(2) wagging studies of Kanamori et al. [J. Chem. Phys. 92, 197 (1990)] as well as millimeter wave rotation-tunneling studies of Tanaka et al. [J. Chem. Phys. 120, 3604 (2004)]. The two bands reflect transitions out of symmetric (0(+)) and antisymmetric (0(-)) tunneling levels of vinyl radical populated at 14 K slit-jet expansion temperatures. The band origins for the lower-lower (0(+)<--0(+)) and upper-upper (0(-)<--0(-)) transitions occur at 2901.8603(7) and 2901.9319(4) cm(-1), respectively, which indicates an increase in the tunneling splitting and therefore a decrease in the effective tunneling barrier upon CH(2) symmetric stretch excitation. The third A-type band with origin at 2897.2264(3) cm(-1) exhibits rotational constants quite close to (but at high-resolution distinguishable from) the vinyl radical ground state, consistent with a CH(2) symmetric stretch hot band built on one or more quanta of excitation in a low frequency vibration. The observed CH(2) symmetric stretch bands are in excellent agreement with anharmonically scaled high level density functional theory (DFT) calculations and redshifted considerably from previous low resolution assignments. Of particular dynamical interest, Boltzmann analysis indicates that the pair of 0(+) and 0(-) tunneling bands exhibits 1:1 nuclear spin statistics for K(a)=even:odd states. This differs from the expected 3:1 ratio for feasible exchange of the two methylenic H atoms but is consistent with a 4:4 ratio predicted for interchange between all three H atoms. This suggests the novel dynamical possibility of large amplitude "roaming" of all three H atoms in vinyl radical, promoted by high internal vibrational excitation arising from dissociative electron attachment in the discharge.  相似文献   

13.
Predissociation spectra of the H5O2+.Ar(1,2) cluster ions are reported in the 1000-1900 cm(-1) region. The weakly bound argon atoms enable investigation of the complex in a linear action mode, and the resulting spectra are much simpler than those reported previously in this region [Asmis et al., Science 299, 1375 (2003) and Fridgen et al., J. Phys. Chem. A 108, 9008 (2004)], which were obtained using infrared multiphoton dissociation of the bare complex. The observed spectrum consists of two relatively narrow bands at 1080 and 1770 cm(-1) that are likely due to excitation of the shared proton and intramolecular bending vibrations of the two water molecules, respectively. The narrow linewidths and relatively small (60 cm(-1)) perturbation introduced by the addition of a second argon atom indicate that the basic "zundel" character of the H5O2+ ion survives upon complexation.  相似文献   

14.
Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] has been employed in a study of the potential energy surfaces for the complexes H(2)C(3)H(+) · Ar and c-C(3)H(3)(+) · Ar. For the former complex, a pronounced minimum with C(s) symmetry was found (D(e) ≈ 780 cm(-1)), well below the local "H-bound" minimum with C(2v) symmetry (D(e) ≈ 585 cm(-1)). The absorption at 3238 cm(-1) found in the recent infrared photodissociation spectra [A. M. Ricks et al., J. Chem. Phys. 132, 051101 (2010)] is, thus, interpreted as an essentially free acetylenic CH stretching vibration of the propargyl cation. A global minimum of C(s) symmetry was also obtained for c-C(3)H(3)(+) (D(e) ≈ 580 cm(-1)), but the energy difference with respect to the local C(2v) minimum is only 54 cm(-1).  相似文献   

15.
Raman spectra of N,N-dimethly-p-nitroaniline have been measured in various solvents. The Raman-Stokes shift of the band assigned to the NO2 stretching mode excited at 488 nm was found to be linearly dependent on the pi-pi* absorption band center. Furthermore, it is found that the Raman-Stokes shift of the NO2 stretching mode is dependent upon the excitation wavelength. The extent of the shift when excited at 355 versus 488 nm is almost linearly dependent on the vibrational bandwidth of the NO2 mode. The phenomenon is interpreted as the result of the solvation state selective excitation of the vibrational mode as in the case of phenol blue [Yamaguchi et al., J. Chem. Phys. 109, 9075 (1998); 109, 9084 (1998)].  相似文献   

16.
The photodissociation of methyl iodide in the A band is studied by full-dimensional (9D) wave packet dynamics calculations using the multiconfigurational time-dependent Hartree approach. The potential energy surfaces employed are based on the diabatic potentials of Xie et al. [J. Phys. Chem. A 2000, 104, 1009] and the vertical excitation energy is taken from recent ab initio calculations [Alekseyev et al. J. Chem. Phys.2007, 126, 234102]. The absorption spectrum calculated for exclusively parallel excitation agrees well with the experimental spectrum of the A band. The electronic population dynamics is found to be strongly dependent on the motion in the torsional coordinate related to the H(3)-C-I bend, which presumably is an artifact of the diabatic model employed. The calculated fully product state-selected partial spectra can be interpreted based on the reflection principle and suggests strong coupling between the C-I stretching and the H(3)-C-I bending motions during the dissociation process. The computed rotational and vibrational product distributions typically reproduce the trends seen in the experiment. In agreement with experiment, a small but significant excitation of the total symmetric stretching and the asymmetric bending modes of the methyl fragment can be seen. In contrast, the umbrella mode of the methyl is found to be too highly excited in the calculated distributions.  相似文献   

17.
New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.  相似文献   

18.
To describe singly-ionized states of molecular clusters we devised an effective Hamiltonian approach that combines (1) accurate monomer ionization potentials from many-electron wave functions with (2) polarization shifts and (3) effective monomer couplings obtained from a simple one-electron approach (the superposition-of-fragment-states (SFS) method [Valeev et al., J. Am. Chem. Soc., 2006, 128, 9882]). The accuracy of the intermolecular coupling parameters evaluated with SFS Hartree-Fock (HF) and Density-Functional-Theory (DFT) variants was evaluated for several weakly-bound dimers and compared against the state-of-the-art equation-of-motion ionization-potential coupled-cluster singles and doubles (EOM-IP-CCSD) data of Krylov and co-workers. The SFS-HF method produces coupling integrals accurate to a few percent, whereas SFS-DFT predictions are substantially worse. A hybrid approach combining SFS-HF couplings and shifts with EOM-IP-CCSD ionization potentials of monomers (denoted as SFS-EOM-IP-CCSD) was applied to ionized states of two conformers of a benzene dimer and ten representative DNA base pairs. The 16 considered SFS-EOM-IP-CCSD ionization potentials of the benzene dimer differed from the reference EOM-IP-CCSD IPs of Krylov and co-workers [Pieniazek et al., J. Chem. Phys. 2007, 127, 044317; Bravaya et al., Phys. Chem. Chem. Phys. 2010, 12, 2261] by less than 0.1 eV on average, and at most by 0.2 eV. For the DNA base pairs the mean absolute (median) deviation of the SFS-EOM-IP-CCSD IPs was 0.27 (0.23) eV; several deviations for non-Koopmans states were as large as 0.9 eV. The SFS-EOM-IP-CCSD method can be readily applied to large molecular clusters with computational effort scaling cubically with the size of the cluster.  相似文献   

19.
A hybrid-exchange DFT hamiltonian and a periodic slab model have been employed to simulate water dissociation at the border of sub-monolayer MgO films deposited on Ag(100). Non-polar and polar borders have been considered, but the reaction energy is higher in the former case. The O-1s core level shifts and the O-H vibrational frequencies have been calculated and shown to be compatible with recent XPS and HREELS data, respectively [Savio et al., J. Chem. Phys., 2003, 119, 12053].  相似文献   

20.
Photon-trap spectroscopy, a generalized scheme of cavity ringdown spectroscopy, is applied to measure an infrared spectrum of the C-H stretching vibration of alkylsiloxane monolayer films grafted on a silicon substrate. A continuous-wave laser beam is introduced into a high-finesse Fabry-Pérot cavity containing the substrate placed exactly normal to the light beam to minimize optical losses. The lifetime of the light trapped in the cavity is measured to detect optical absorption sensitively. The results show clear dependence of the absorbance on the location of the monolayers with respect to a standing wave formed in the cavity; the absorbance is practically zero when the monolayers on both the surfaces are adjusted at nodes, whereas it is maximized at antinodes. The present experiment is materialized on the basis of the principles established by our previous study [Terasaki et al., J. Opt. Soc. Am. B 22, 675 (2005)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号