首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Important effects resulting from chemical exposure of a polymeric material are the alterations in its stress–strain response, its sensitivity to strain-rate effects and the development of irreversible strains. The paper presents the results of experiments conducted on membranes subjected to chemical exposure and discusses the development of a single constitutive model that is applicable to both untreated and chemically-treated materials. The constitutive modelling of both categories of polymeric materials takes into consideration the influence of large strains, strain-rate effects and irreversible effects.  相似文献   

2.
3.
Particle-reinforced rubbers are composite materials consisting of randomly distributed, stiff fibers/particles in a soft elastomeric material. Since the particles are stiff compared to the embedding rubber, their deformation can be ignored for all practical purposes. However, due to the softness of the rubber, they can undergo rigid body translations and rotations. Constitutive models accounting for the effect of such particle motions on the macroscopic response under prescribed deformations on the boundary have been developed recently. But, in some applications (e.g., magneto-active elastomers), the particles may experience additional torques as a consequence of an externally applied (magnetic) field, which, in turn, can affect the overall rotation of the particles in the rubber, and therefore also the macroscopic response of the composite. This paper is concerned with the development of constitutive models for particle-reinforced elastomers, which are designed to account for externally applied torques on the internally distributed particles, in addition to the externally applied deformation on the boundary of the composite. For this purpose, we propose a new variational framework involving suitably prescribed eigenstresses on the particles. For simplicity, the framework is applied to an elastomer reinforced by aligned, rigid, cylindrical fibers of elliptical cross section, which can undergo finite rotations in the context of a finite-deformation, plane strain problem for the composite. In particular, expressions are derived for the average in-plane rotation of the fibers as a function of the torques that are applied on them, both under vanishing and prescribed strain on the boundary. The results of this work will make possible the development of improved constitutive models for magneto-active elastomers, and other types of smart composite materials that are susceptible to externally applied torques.  相似文献   

4.
5.
The anatomy and geometry of the lung at the micro- and macroscopic level have been described briefly. A notion of lung parenchyma — a macroscopically continuous medium whose mechanical properties result from those of microstructural components — has been adapted. Simplifying assumptions propounded in the constitutive model have been discussed. Two phases have been distinguished in the medium: the solid phase — a highly deformable, nonlinearly elastic skeleton in the form of a thin-walled tissue structure on the micro-scale — and the fluid phase — perfect gas (air) filterating through the structure. General constitutive relations for both phases and their mechanical interactions have ben formulated. Further, the fundamental set of differential equations of the quasi-static coupled problem has been developed. Large deformations, material nonlinearities, and dependence of permeability on skeleton deformation have been included. Matrix formulation of the problem has been presented from the point of view of the finite element method. An implicit iterative time integration scheme has been proposed. The algorithm has been illustrated with results of simple numerical tests.  相似文献   

6.
The dynamic response of an isotropic hyperelastic membrane tube, subjected to a dynamic extension at its one end, is studied. In the first part of the paper, an asymptotic expansion technique is used to derive a non-linear membrane theory for finite axially symmetric dynamic deformations of incompressible non-linearly elastic circular cylindrical tubes by starting from the three-dimensional elasticity theory. The equations governing dynamic axially symmetric deformations of the membrane tube are obtained for an arbitrary form of the strain-energy function. In the second part of the paper, finite amplitude wave propagation in an incompressible hyperelastic membrane tube is considered when one end is fixed and the other is subjected to a suddenly applied dynamic extension. A Godunov-type finite volume method is used to solve numerically the corresponding problem. Numerical results are given for the Mooney-Rivlin incompressible material. The question how the present numerical results are related to those obtained in the literature is discussed.  相似文献   

7.
The mechanical properties of interphase regions at bi-material interfaces can be quite different from the surrounding bulk materials. For composite materials, this interphase region is usually thin but plays an important role in their overall mechanical properties. Nanoindentation has become a commonly used experimental technique for measuring the mechanical properties of materials, especially when one of the dimensions is small. However, the extraction of reduced elastic modulus from the nanoindentation of thin films on substrates can pose challenges due to the influence of the substrate. In this study, the nanoindentation of thin films on substrates has been examined with a view to extracting the reduced modulus of thin polymer films.Thin films of (3-aminopropyl)triethoxysilane (C9H23NO3Si, γ-APS) were deposited on silicon. An interfacial force microscope (IFM) was used to indent the γ-APS films. The effect of the substrate was studied by considering two very different thicknesses ( and ). The nanoindentation data were analyzed via contact mechanics theories and a finite element analysis that incorporated surface interactions. The analyses showed that nanoindentation experiments can provide reliable values of film modulus when the film is very different from the substrate. It was found that the commonly used rule of thumb that the indentation depth should be less than 10% of the thickness did not eliminate substrate effects for a wide range of material combinations. Instead, it is proposed that the contact radius should be less than 10% of the thickness so that contact mechanics theories for monolithic materials can be used without considering the presence of the substrate. The modulus of γ-APS polymer films and the surface energy between the tungsten tip of the IFM and γ-APS films were extracted and were related to their cure. A completely cured thick γ-APS film had a reduced modulus of . This value falls in the usual range for polymers due to the amorphous nature of the γ-APS films.  相似文献   

8.
Dynamic response of a reinforced concrete slab subjected to air blast load   总被引:1,自引:0,他引:1  
Reinforced concrete is the principal material for military engineering and nuclear power plant containment. However, impacts and explosions could completely destroy such structures, causing tremendous casualties and property loss. Hence, this study conducts an analysis on the propagation law of a blast pressure wave and the dynamic response of reinforced concrete structures under explosive pressure wave effects. This study uses proper state material parameters and equations and then applies the nonlinear finite element analysis software LS-DYNA to conduct a numerical simulation of a free-field explosion model. After comparison with the computed results from empirical equations and validating the reliability of the numerical analysis model, the destruction and influencing factors on reinforced concrete slabs, under the effects of a blast pressure wave, are investigated. The results can serve as a reference for future analysis and design.  相似文献   

9.
A numerical method is presented to analyse a steady convection-diffusion problem with a first-order chemical reaction defined on an infinite region. The present method is based on the combined finite element and boundary element methods. For one- and two-dimensional examples in an infinite region the numerical results by the present method are in excellent agreement with the exact solutions. As a practical application, the simulation of the concentration distribution of the chemical oxygen demand at Kojima Bay is carried out.  相似文献   

10.
Perforation failure of fibre metal laminate (FML) panels subjected to the localized high intensity blast loading is studied. The FMLs are based on various stacking configurations of aluminium alloy sheets and layers of woven glass fibre in a polypropylene matrix (GFPP) composite. Finite element models of the FMLs were created using the commercial software package Abaqus/Explicit, where the constitutive relationships and damage in the composite material were described through a user-defined subroutine. The composite was modelled as an orthotropically elastic material prior to damage initiation and the growth of subsequent damage was based on an instant failure rate-dependent model. The simulated deformation and failure modes in the FMLs were found to be in good agreement with published experimental data. For FMLs based on thin GFPP layers, a number of dynamic failure scenarios were captured, such as petalling, large tensile tearing and multiple debonding between the aluminium and GFPP layers. A high degree of correlation between simulated failure on the back face aluminium and the underlying GFPP damage modes was revealed. Finally, the transient behaviour of FML panels during blast loading was studied and discussed.  相似文献   

11.
A methodology is proposed to model the complex morphology of rough interfaces using Fourier techniques and image analysis. It allows an optimal representation of a rough interface so as to enable a realistic calculation of the local stress and strain fields in the interface vicinity using finite element techniques. The methodology is illustrated through a sensitivity analysis carried out on a thermal barrier coating system. Typical bi-material interfaces with different levels of morphological complexity are described in 2D and 3D using both periodic (sinusoidal) and Fourier functions. The results are discussed in terms of their relative accuracy.  相似文献   

12.
An axisymmetric finite element is developed for the dynamic analysis of pipes subjected to water hammer. The analysis seamlessly captures the pipe response due to water hammer by solving first the water hammer mass and momentum conservation equations, to recover the spatial–temporal distribution of the internal pressure, and then uses the predicted pressure history to form a time-dependent energy equivalent load vector within a finite element model. The study then determines the pipe response by solving the finite element discretized equations of motion. The formulation of the pipe response is based on Hamilton’s principle in conjunction with a thin shell theory formulation, and captures inertial and damping effects. The results predicted by the model are shown to be in agreement with those based on an axisymmetric shell model in Abaqus for static, free vibration and transient responses for benchmark problems. The water hammer and structural models are seamlessly integrated to enable advancing the transient solution well into the time domain to capture the effect of reflected pressure wave due to water hammer. The results indicate that the radial stress/displacement oscillations approach those of the quasi-steady response when the valve closure time exceeds eight times the period of radial vibrations obtained for the case of instantaneous valve closure.  相似文献   

13.
We present a numerical investigation of a degenerate nonlinear parabolic–elliptic system, which describes the chemical aggression of limestones under the attack of SO2, in high permeability regime. This system has been introduced in the first part of this paper. We present a finite element scheme for our model and its numerical stability is given under suitable CFL conditions. Numerical tests are discussed as well as some examples of the numerical behavior of the solutions.  相似文献   

14.
The objectives of this paper are to evaluate the factors that are involved in the tillage process, and to explore the potential approaches for the computer-aided design of tillage tools. An overview related to the dynamic effect on the performance of tillage operations has been conducted. Compared with the analytical methods, the finite element method (FEM) has some advantages for the computerized design of tillage tools. The artificial neural networks (ANN) may be useful for the integrated evaluation of tillage performance with multi-objectives. ANN can be employed for simulation of a dynamic constitutive model and identification of soil conditions for agricultural soils. The integral approach of ANN analysis with FEM is found to be promising for optimizing design of tillage tools.  相似文献   

15.
Pressureless sintering of powder-processed functionally graded materials is being pursued to economically produce metal–ceramic composites for a variety of high-temperature (e.g., thermal protection) and energy-absorbing (e.g., armor) applications. During sintering, differential shrinkage induces stresses that can compromise the integrity of the components. Because the strength evolves as the component is sintered, it is important to model how the evolution of the differential shrinkage governs the stress distribution in the component in order to determine when the strength will be exceeded and cracking initiated. In this investigation, a model is proposed that describes the processing/microstructure/property/performance relationship in pressurelessly sintered functionally graded plates and rods. This model can be used to determine appropriate shrinkage rates and gradient architectures for a given component geometry that will prevent the component from cracking during pressureless sintering by balancing the evolution of strength, which is assumed to be a power law function of the porosity, with the evolution of stress. To develop this model, the powder mixture is considered as a three-phase material consisting of voids, metal particles, and ceramic particles. A micromechanical thermal elastic–viscoplastic constitutive model is then proposed to describe the thermomechanical behavior of the composite microstructure. The subsequent evolution of the thermomechanical properties of the matrix material during sintering is assumed to obey a power law relationship with the level of porosity, which is directly related to the shrinkage strain, and was refined to account for the evolving interparticle cohesion of the matrix phase due to sintering. These thermomechanical properties are incorporated into a 2-D thermomechanical finite element analysis to predict the stress distributions and distortions that arise from the evolution of differential shrinkage during the pressureless sintering process. Differential shrinkage results were verified quantitatively through comparison with the shape profile for a pressurelessly sintered functionally graded nickel–alumina composite plate with a cylindrical geometry, and the stress distribution results verified from qualitative observations of the absence or presence of cracking as well as the location in specimens with different gradient architectures. The cracking was mitigated using a reverse gradient at one end of the specimen, and the resulting distortions associated with the shape profile were determined to be no more than 15% reduced from the predictions. The effects of geometry were also studied out-of-plane by transforming the plate into a rod through an increase in thickness, while in-plane effects were studied by comparing the results from the cylindrical specimen with a specimen that has a square cross-sectional geometry. By transforming from a plate to a rod geometry, the stress no longer exceeds critical levels and cracks do not form. The results from the in-plane geometric study indicated that critical stresses were reached in the square geometry at temperatures 100 °C less than in the cylindrical geometry. Additionally, the location of primary cracking was shifted towards the metal-rich end of the specimen, while the stress distribution associated with this shift and the lower temperature for the critical stress resulted in secondary cracking.  相似文献   

16.
The thermomechanical analysis of powder-bed fusion using a laser beam is simulated in both meso- and macroscales within a framework combining continuum assumption and level-set formulation. The mesoscale simulation focuses on laser interaction with the powder bed, and on subsequent melting and solidification. Modelling is conducted at the scale of material deposition, in which powder-bed fusion, hydrodynamics in the melt pool, and thermal stress are simulated. The macroscale model focuses on part construction and post-deposition. During construction, by contrast with the mesoscale approach, the fluid flow in the fusion zone is ignored and material addition is simplified by modelling it at the scale of entire layers, or fractions of layers. The modelling of the energy input is adapted accordingly. This thermomechanical model addresses heat exchange, residual stress, and distortion at the part's scale. In both approaches, adaptive remeshing is applied, providing a good compromise between the needs to provide accurate prediction and maintaining sustainable computation times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号