首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A series of cyanide-bridged complexes that combine a low-valent photoacceptor rhenium(I) metal center with an electroactive midvalent rhenium(V) complex were prepared. The synthesis involved the preparation of novel asymmetric rhenium(V) oxo compounds, cis-Re(V)O(CN)(acac(2)en) (1) and cis-Re(V)O(CN)(acac(2)pn) (2), formed by reacting trans-[Re(V)O(OH(2))(acac(2)en)]Cl or trans-Re(V)O(acac(2)pn)Cl with [NBu(4)][CN]. The μ-bridged cyanide mixed-oxidation Re(V)-Re(I) complexes were prepared by incubating the asymmetric complexes, 1 or 2, with fac-[Re(I)(bipy)(CO)(3)][OTf] to yield cis-[Re(V)O(acac(2)en)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (3) and [cis-Re(V)O(acac(2)pn)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (4), respectively.  相似文献   

2.
Several rhenium(V) oxo complexes with tetradentate N(2)O(2) Schiff base ligands were synthesized and characterized. The general synthetic procedure involved reaction of [NBu(4)][ReOCl(4)] with a tetradentate Schiff base ligand (L(1) = N,N'-ethylenebis(acetylacetoneimine), (acac(2)en) or L(2) = N,N'-propylenebis(acetylacetoneimine) (acac(2)pn)) in ethanol solution to generate complexes of the form trans-ReOX(L) where X = Cl(-), MeO(-), ReO(4)(-), or H(2)O. The product isolated from the reaction was found to be dependent on the reaction conditions, in particular the presence or absence of water and/or base. The mu-oxo-Re(2)O(3)(L)(2) dimers were synthesized and characterized for chemical and structural comparison to the related monomers. Conversion of the monomer to its dimer analogue was followed qualitatively by spectrophotometry. The complexes were characterized by (1)H and (13)C NMR, UV-vis, and IR spectroscopy, elemental analysis, and single crystal X-ray diffraction. The crystallographic data reported for the structures are as follows: trans-[ReO(OH(2))(acac(2)en)]Cl (H(20)C(12)ClN(2)O(4)Re) 1, triclinic (Ponemacr;), a = 7.2888(6) A, b = 9.8299(8) A, c = 10.8195(9) A, alpha = 81.7670(10) degrees, beta = 77.1510(10) degrees, gamma = 87.6200(10) degrees, V = 747.96(11) A(3), Z = 2; trans-[ReO(OReO(3))(acac(2)en)] (H(18)C(12)N(2)O(7)Re(2)) 2, monoclinic (P2(1)/c), a = 7.5547(4) A, b = 8.7409(5) A, c= 25.7794(13) A, beta = 92.7780(10) degrees, V = 1700.34(16) A(3), Z = 4; trans-[ReOCl(acac(2)pn)] (H(20)C(13)N(2)O(3)ClRe) 3, monoclinic (P2(1)/c), a = 8.1628(5) A, b = 13.0699(8) A, c = 28.3902(17) A, beta = 97.5630(10) degrees, V = 3002.5(3) A(3), Z = 8; trans-[ReO(OMe)(acac(2)pn)] (H(23)C(14)N(2)O(4)Re) 4, monoclinic (P2(1)/c), a = 6.7104(8) A, b = 27.844(3) A, c = 8.2292(9) A, beta = 92.197(2) degrees, V = 1536.4(3) A(3), Z = 4; trans-[mu-oxo-Re(2)O(3)(acac(2)en)(2)] (H(36)C(24)N(4)O(7)Re(2)) 5, monoclinic (P2(1)/n), a = 9.0064(5) A, b = 12.2612(7) A, c = 12.3695(7) A, beta = 90.2853(10) degrees, V = 1365.94(13) A(3), Z = 2; and trans-[mu-oxo Re(2)O(3)(acac(2)pn)(2)] (H(40)C(26)N(4)O(7)Re(2)) 6, monoclinic (P2(1)/n), a = 9.1190(5) A, b = 12.2452(7) A, c = 12.8863(8) A, beta = 92.0510(10) degrees, V = 1438.01(14) A(3), Z = 2.  相似文献   

3.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

4.
A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.  相似文献   

5.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

6.
Reactions of Re(V), tetradentate Schiff base complexes with tertiary phosphines have previously yielded both rearranged Re(V) and reduced Re(III) complexes. To further understand this chemistry, the rigid diiminediphenol (N(2)O(2)) Schiff base ligand sal(2)phen (N,N'-o-phenylenebis(salicylaldimine)) was reacted with (n-Bu(4)N)[ReOCl(4)] to yield trans-[ReOCl(sal(2)phen)] (1). On reaction with triphenylphosphine (PPh(3)), a rearranged Re(V) product cis-[ReO(PPh(3))(sal(2)phen*)]PF(6) (2), in which one of the imines was reduced to an amine during the reaction, and the reduced Re(III) products trans-[ReCl(PPh(3))(sal(2)phen)] (4) and trans-[Re(PPh(3))(2)(sal(2)phen)](+) (5) were isolated. Reaction of sal(2)phen with [ReCl(3)(PPh(3))(2)(CH(3)CN)] resulted in the isolation of [ReCl(2)(PPh(3))(2)(salphen)] (3). The compounds were characterized using standard spectroscopic methods, elemental analyses and single crystal X-ray crystallography.  相似文献   

7.
Gray TG  Holm RH 《Inorganic chemistry》2002,41(16):4211-4216
The site-differentiated, cyanide-substituted hexanuclear rhenium(III) selenide clusters cis- and trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)] and [Re(6)Se(8)(PEt(3))(5)(CN)](+) have been prepared from heterogeneous reactions of the corresponding iodo clusters with AgCN in refluxing chloroform. Isolated yields are 68%, 46%, and 64% for cis-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], trans-[Re(6)Se(8)(PEt(3))(4)(CN)(2)], and [Re(6)Se(8)(PEt(3))(5)(CN)](+), respectively. The new compounds are air- and water-stable and are characterized by X-ray diffraction crystallography, (31)P NMR and IR spectroscopies, and FAB mass spectrometry. In related work, the solvent exchange rates of two site-differentiated monosolvate clusters, [Re(6)Se(8)(PEt(3))(5)(MeCN)](SbF(6))(2) and [Re(6)Se(8)(PEt(3))(5)(Me(2)SO)](SbF(6))(2), in neat solvents were measured by (1)H NMR. These clusters are substitutionally inert; k approximately 10(-)(5)-10(-)(6) s(-)(1) at 318 K. Activation parameters indicate a dissociative ligand exchange mechanism; DeltaH() values obtained from least-squares fitting of temperature-dependent kinetics data exceed RT by a factor of ca. 50 over the temperature range studied. These results demonstrate that the substitutional lability encountered in a previous study of cluster photophysics (Gray, T. G.; Rudzinski, C. M.; Nocera, D. G.; Holm, R. H. Inorg. Chem. 1999, 38, 5932) cannot result from ground-state thermal reactions.  相似文献   

8.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

9.
The addition of methanol and ethanol to the previously reported cluster solvates [Re6(mu3-Se)8(PEt3)5(MeCN)](SbF6)2 and trans-[Re6(mu3-Se)8(PEt3)4(CH3CN)2][SbF6]2 afforded three cluster complexes with imino ester ligands: {Re6(mu3-Se)8(PEt3)5[HN=C(OCH3)(CH3)]}(SbF6)2, {Re6(mu3-Se)8(PEt3)5[HN=C(OCH2CH3)(CH3)]}{SbF6}2, and trans-{Re6(mu3-Se)8(PEt3)4[HN=C(OCH3)(CH3)]2}{SbF6}2. In all cases, predominant formation of the Z isomers was observed.  相似文献   

10.
The reactions of the previously reported cluster complexes [Re(6)(mu(3)-Se)(8)(PEt(3))(5)I]I, trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)], and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)I(2)] with the [Re(6)(mu(3)-Se)(8)](2+) core with CO in the presence of AgSbF(6) afforded the corresponding cluster carbonyls [Re(6)(mu(3)-Se)(8)(PEt(3))(5)(CO)][SbF(6)](2) (), trans-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (), and cis-[Re(6)(mu(3)-Se)(8)(PEt(3))(4)(CO)(2)][SbF(6)](2) (). Infrared spectroscopy indicated weakening of the bond in CO, suggesting the existence of backbonding between the cluster core and the CO ligand(s). Electrochemical studies focusing on the reversible, one-electron oxidation of the cluster core revealed a large increase in the oxidation potential upon going from the acetonitrile derivatives to their carbonyl analogs, consistent with the depleted electron density of the cluster core upon CO ligation. Disparities between the IR spectra and oxidation potential between and indicate that electronic differences exist between sites trans and cis to the location of a ligand of interest. The active role played by the Se atoms in influencing the cluster-to-CO bonding interactions is suggested through this result and density functional (DF) computational analysis. The computations indicate that molecular orbitals near the HOMO account for backbonding interactions with a high percentage of participation of Se orbitals.  相似文献   

11.
The electrochemical behavior of trans-[Re((V))O(2)(en)(2)]I and trans-[Re((V))O(2) (en)(2)]ClO(4) (en=ethylenediamine) complexes was studied by cyclic voltammetry on Au electrodes. Experiments were performed in aqueous solutions at pH 7.0 and at room temperature. The complex voltammogram was characterized by Re-containing species, assigned to the [Re((V))O(2)(en)(2)](+)/[Re((IV))O(2)(en)(2)] couple, and I-containing species. To overcome I interference, the electrochemical response of Re complexes was segregated by performing a reductive desorption of adsorbed I from Au. Copyright 2001 Academic Press.  相似文献   

12.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

13.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

14.
The complex Re(III)(benzil)(PPh(3))Cl(3) (2) is used to synthesize a variety of Re(III) and Re(II) polypyridyl complexes of the type cis-[Re(III)(L(2))(2)Cl(2)](+), [Re(II)(L(2))(3)](2+), Re(III)(L(3))Cl(3), [Re(III)(L(3))(2)Cl](2+), and [Re(III)(L(4))Cl(2)](+), where L(2) = bpy (3and 6), tbpy (4 and 7), phen (5 and 8); L(3) = terpy (9and 10); L(4) = TMPA (11). The complex cis-[Re(III)(bpy)(2)Cl(2)](+) (3) is a useful synthon in the formation of complexes of the type [Re(bpy)(2)L(x)()](n)()(+) that are six- or seven-coordinate Re(III) complexes (13, 16, and 18) or octahedral Re(II) or Re(I) complexes (12 and 17). The [Re(III)(terpy)(2)Cl](2+) (10) complex can be reduced to form the Re(I) complex, [Re(I)(terpy)(2)](+) (21) and then electrochemically reoxidized to form new complexes of the type [Re(III)(terpy)(2)L](n)()(+). Similar behavior is observed for the [Re(II)(bpy)(3)](2+) (6) complex where [Re(III)(bpy)(3)((t)BuNC)](3+) (20) and [Re(I)(bpy)(3)](+) (19) may be formed. The electrochemistry of these complexes is discussed in relation to their reactivity and the observed pi-acidity of the polypyridyl ligands. In addition, X-ray crystal structures for cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3) and [Re(I)(bpy)(3)]PF(6) (19) are reported. cis-[Re(III)(bpy)(2)Cl(2)]PF(6) (3, ReC(20)H(16)N(4)Cl(2)F(6)P) crystallizes in the monoclinic space group C2/c with Z = 4 and lattice parameters a = 15.043(5) ?, b = 13.261(4) ?, c = 12.440(4) ?, and beta = 108.86(2) degrees at -100 degrees C. [Re(I)(bpy)(3)]PF(6) (19, ReC(30)H(24)N(6)F(6)P) crystallizes in the rhombohedral space group R&thremacr;c(h) (No. 167) with Z = 12 and lattice parameters a = 13.793(3) ? and c = 51.44(3) ? at -100 degrees C.  相似文献   

15.
The reactions of nitrile complexes of the [Re(6)(μ(3)-Se)(8)](2+) core-containing clusters, [Re(6)(μ(3)-Se)(8)(PEt(3))(n)(CH(3)CN)(6-n)](2+) [n = 5 (1); n = 4, cis- (2) and trans- (3); n = 0 (4)], with organic azides C(6)H(5)CH(CH(3))N(3) and C(6)H(5)CH(2)N(3) produced the corresponding cationic imino complexes of the general formula [Re(6)(μ(3)-Se)(8)(PEt(3))(n)(L)(6-n)](2+) [L = PhN=CHCH(3): n = 5 (5); n = 4, cis- (6) and trans- (7); n = 0 (8) and L = HN=CHPh: n = 5 (9); n = 4, cis- (10) and trans- (11)]. These novel complexes were characterized by NMR spectroscopy ((1)H and (31)P) and single-crystal X-ray diffraction. A mechanism involving the migration of one of the groups on the azido α-C atom to the α-N atom of the azido complex, concerted with the photo-expulsion of N(2), was invoked to rationalize the formation of the imino complexes. Density functional theory (DFT) calculations indicated that due to the coordination with and activation by the cluster core, the energy of the electronic transition responsible for the photo-decomposition of a cluster-bound azide is much reduced with respect to its pure organic counterpart. The observed geometric specificity was rationalized by using the calculated and optimized preferred ground-state conformation of the cluster-azido intermediates.  相似文献   

16.
Several new cobalt(III) complexes containing (3-aminopropyl)dimethylphosphine (pdmp) have been prepared, and their molecular structures have been determined. A dichloro complex of trans(Cl,Cl)-cis(P,P)-[CoCl(2)(pdmp)(2)]PF(6) (1) was prepared from trans-[CoCl(2)(py)(4)]Cl.6H(2)O and pdmp. X-Ray crystallography confirmed the (C(2))-chair(2) conformation of two six-membered pdmp chelate rings in 1, while the analogous 1,3-bis(dimethylphosphino)propane (dmpp) complex trans-[CoCl(2)(dmpp)(2)]ClO(4) (3) exhibited the (D(2d))-twist(2) conformation. Substitution reactions of 1 for ethane-1,2-diamine (en), pentane-2,4-dionate (acac), and N,N-dimethyldithiocarbamate (dtc) gave the mixed-ligand tris(chelate)-type complexes of [Co(en)(2)(pdmp)]Cl(2)(PF(6)) (5), [Co(acac)(pdmp)(2)](PF(6))(2) (7), and [Co(dtc)(3-n)(pdmp)(n)](PF(6))(n) [n = 1 (9) or 2 (10)], respectively. The conformer of the complex cation in 5 was assigned as lel.ob.chair by X-ray analysis. In the case of the acac complex 7, both trans(P,N) (7a) and trans(N,N) (7b) isomers were isolated, and the complex cations were characterized as syn-chair(2) and anti-chair(2) conformers, respectively, with respect to the six-membered pdmp chelate rings. These conformers coincide with the most stable ones anticipated by the DFT optimum geometry calculations. In the crystal structure of trans(P,N)-[Co(dtc)(pdmp)(2)](BPh(4))(2) (10') one of the pdmp chelate rings adopted a skew-boat (twist) conformation, which reduced the intramolecular steric ring-ring interaction effectively. The DFT optimized geometries for several isomers and/or conformers of [CoCl(2)(pdmp)(2)](+) were compared.  相似文献   

17.
The complexes [Ru(tpy)(acac)(Cl)], [Ru(tpy)(acac)(H(2)O)](PF(6)) (tpy = 2,2',2"-terpyridine, acacH = 2,4 pentanedione) [Ru(tpy)(C(2)O(4))(H(2)O)] (C(2)O(4)(2)(-) = oxalato dianion), [Ru(tpy)(dppene)(Cl)](PF(6)) (dppene = cis-1,2-bis(diphenylphosphino)ethylene), [Ru(tpy)(dppene)(H(2)O)](PF(6))(2), [Ru(tpy)(C(2)O(4))(py)], [Ru(tpy)(acac)(py)](ClO(4)), [Ru(tpy)(acac)(NO(2))], [Ru(tpy)(acac)(NO)](PF(6))(2), and [Ru(tpy)(PSCS)Cl] (PSCS = 1-pyrrolidinedithiocarbamate anion) have been prepared and characterized by cyclic voltammetry and UV-visible and FTIR spectroscopy. [Ru(tpy)(acac)(NO(2))](+) is stable with respect to oxidation of coordinated NO(2)(-) on the cyclic voltammetric time scale. The nitrosyl [Ru(tpy)(acac)(NO)](2+) falls on an earlier correlation between nu(NO) (1914 cm(-)(1) in KBr) and E(1/2) for the first nitrosyl-based reduction 0.02 V vs SSCE. Oxalate ligand is lost from [Ru(II)(tpy)(C(2)O(4))(H(2)O)] to give [Ru(tpy)(H(2)O)(3)](2+). The Ru(III/II) and Ru(IV/III) couples of the aqua complexes are pH dependent. At pH 7.0, E(1/2) values are 0.43 V vs NHE for [Ru(III)(tpy)(acac)(OH)](+)/[Ru(II)(tpy)(acac)(H(2)O)](+), 0.80 V for [Ru(IV)(tpy)(acac)(O)](+)/[Ru(III)(tpy)(acac)(OH)](+), 0.16 V for [Ru(III)(tpy)(C(2)O(4))(OH)]/[Ru(II)(tpy)(C(2)O(4))(H(2)O)], and 0.45 V for [Ru(IV)(tpy)(C(2)O(4))(O)]/[Ru(III)(tpy)(C(2)O(4))(OH)]. Plots of E(1/2) vs pH define regions of stability for the various oxidation states and the pK(a) values of aqua and hydroxo forms. These measurements reveal that C(2)O(4)(2)(-) and acac(-) are electron donating to Ru(III) relative to bpy. Comparisons with redox potentials for 21 related polypyridyl couples reveal the influence of ligand changes on the potentials of the Ru(IV/III) and Ru(III/II) couples and the difference between them, DeltaE(1/2). The majority of the effect appears in the Ru(III/II) couple. ()A linear correlation exists between DeltaE(1/2) and the sum of a set of ligand parameters defined by Lever et al., SigmaE(i)(L(i)), for the series of complexes, but there is a dramatic change in slope at DeltaE(1/2) approximately -0.11 V and SigmaE(i)(L(i)) = 1.06 V. Extrapolation of the plot of DeltaE(1/2) vs SigmaE(i)(L(i)) suggests that there may be ligand environments in which Ru(III) is unstable with respect to disproportionation into Ru(IV) and Ru(II). This would make the two-electron Ru(IV)O/Ru(II)OH(2) couple more strongly oxidizing than the one-electron Ru(IV)O/Ru(III)OH couple.  相似文献   

18.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

19.
The reduction of ammonium pertechnetate with bis(diphenylphosphino)methane (dppm), and with diphenyl-2-pyridyl phosphine (Ph(2)Ppy), has been investigated. The neutral Tc(II) complex, trans-TcCl(2)(dppm)(2) (1), has been isolated from the reaction of (NH(4))[TcO(4)] with excess dppm in refluxing EtOH/HCl. Chemical oxidation with ferricinium hexafluorophosphate results in formation of the cationic Tc(III) analogue, trans-[TcCl(2)(dppm)(2)](PF(6)) (2). The dppm ligands adopt the chelating bonding mode in both complexes, resulting in strained four member metallocycles. With excess PhPpy, the reduction of (NH(4))[TcO(4)] in refluxing EtOH/HCl yields a complex with one chelating Ph(2)Ppy ligand and one unidentate Ph(2)Ppy ligand, mer-TcCl(3)(Ph(2)Ppy-P,N)(Ph(2)Ppy-P) (3). The cationic Tc(III) complexes, trans-[TcCl(2)(Ph(2)P(O)py-N,O)(2)](PF(6)) (4) and trans-[TcCl(2)(dppmO-P,O)(2)](PF(6)) (5) (Ph(2)P(O)py = diphenyl-2-pyridyl phosphine monoxide and dppmO = bis(diphenylphosphino)methane monoxide), have been isolated as byproducts from the reactions of (NH(4))[TcO(4)] with the corresponding phosphine. The products have been characterized in the solid state and in solution via a combination of single-crystal X-ray crystallography and spectroscopic techniques. The solution state spectroscopic results are consistent with the retention of the bonding modes revealed in the crystal structures.  相似文献   

20.
The oxidations of cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6), cis-[OsII(bpy)2(Cl)(NH3)](PF6), and [OsII(typ)(bpy)(NH3)](PF6)2 have been studied by cyclic voltammetry and by controlled-potential electrolysis. In acetonitrile or in acidic, aqueous solution, oxidation is metal-based and reversible, but as the pH is increased, oxidation and proton loss from coordinated ammonia occurs. cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6) are oxidized by four electrons to give the corresponding OsVI nitrido complexes, [OSVI(typ)(Cl)2(N)]+. Oxidation of [Os(typ)(bpy)(NH3)](PF6)2 occurs by six electrons to give [Os(tpy)(bpy)(NO)](PF6)3. Oxidation of cis-[OsII(bpy)2(Cl)(NH3)](PF6) at pH 9.0 gives cis-[OsII(bpy)2(Cl)(NO)](PF6)2 and the mixed-valence form of the mu-N2 dimer [cis-[Os(bpy)2(Cl)2[mu-N2)](PF6)3. With NH4+ added to the electrolyte, cis-[OsII(bpy)2(Cl)(N2)](PF6) is a coproduct. The results of pH-dependent cyclic voltammetry measurements suggest OsIV as a common intermediate in the oxidation of coordinated ammonia. For cis- and trans-[OsIII(tpy)(Cl)2(NH3)]+, OsIV is a discernible intermediate. It undergoes further pH-dependent oxidation to [OsVI(tpy)(Cl)2(N)]+. For [OsII(tpy)(bpy)(NH3)]2+, oxidation to OsIV is followed by hydration at the nitrogen atom and further oxidation to nitrosyl. For cis-[OsII(bpy)2(Cl)-(NH3)]+, oxidation to OsIV is followed by N-N coupling and further oxidation to [cis-[Os(bpy)2(Cl)2(mu-N2)]3+. At pH 9, N-N coupling is competitive with capture of OsIV by OH- and further oxidation, yielding cis-[OsII(bpy)2(Cl)(NO)]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号