首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical, resonant, and magnetic properties of intercalated copper chromium disulfide CuCrS2 are studied. It is established that CuCrS2 is an antiferromagnetic semiconductor with Néel temperature TN=40.7 K and an effective magnetic moment of 4.3µB. Anomalies in the electrical, magnetic, and resonant properties of CuCrS2 are found at Tc=110 K, which suggest an electron transition accompanied by alteration of the valences of the 3d-metal ions.  相似文献   

2.
Structural features, magnetic properties, and heat capacity of Cr x TiSe2 intercalated compounds with a layered structure have been studied experimentally for 0 ≤ x ≤ 0.5. It is shown that, at high chromium concentrations (x > 0.25), the magnetic properties of the compounds are strongly affected by the degree of ordering and distribution pattern of the intercalated atoms. Depending on the cooling rate of samples of the same composition (x = 0.5), an antiferromagnetic or a cluster-glass-type state can be obtained. Heat capacity measurements have revealed a nonmonotonic variation in the lattice rigidity with increasing concentration of intercalated atoms.  相似文献   

3.
The influence of copper intercalation into the TiSe2 compound on the Fermi energy has been investigated using two independent methods. The first method is based on the analysis of the amplitude of the deformation (induced by impurity intercalation and providing the formation of polarons) as a function of the binding energy of the band of polaron states. For this purpose, the Fe x Cu y TiSe2 system has been synthesized for the first time by cointercalation of copper and iron into the TiSe2 lattice and studied. The second method consists in measuring the electromotive force of an open-circuit electrochemical cell with respect to a metal reference electrode. Both methods lead to consistent results in the range of moderate copper contents. However, considerable discrepancies have been observed in the copper concentration range that corresponds to the beginning of filling of Cu/Ti hybrid states. These discrepancies are explained by the softening of the lattice due to an increase in the density of states at the Fermi level.  相似文献   

4.
The structure of domain walls and new-phase nucleation are investigated in a four-sublattice antiferromagnet (AFM) of the La2CuO4 type placed in a magnetic field which initiates an AFM-weak-ferromagnet (WFM) magnetic structural phase transition. The critical fields for nucleus growth are found in the case of two types of domain walls present. The magnetization curve is calculated and a two-step mechanism is proposed for the AFM-WFM phase transition observed in La2CuO4.  相似文献   

5.
Orbital and spin magnetic moments of the Heusler compounds Co2FeAl and Co2Cr0.6Fe0.4Al were measured by magnetic circular dichroism in X-ray absorption (XMCD). The orbital magnetic moments per spin are quite large (0.1–0.2) compared to bulk values of Fe and Co metals, indicating a considerable spin–orbit coupling in these Heusler compounds. A strong localization of the 3d electron states might be responsible for this observation. The Co and Fe orbital to spin moment ratio shows a distinct decrease of r(Fe)=0.04±0.02 and r(Co)=0.06±0.02 with increasing external field for the ternary compound Co2FeAl, while the ratio is within error limits independent of the field for Co2Cr0.6Fe0.4Al. This is discussed in terms of a relation to magnetocrystalline anisotropies. PACS 75.50.Cc; 71.20.Lp; 78.40.Kc  相似文献   

6.
The stability of a homogeneous state in materials with a more than half-filled polaron band has been investigated for the Fe x TiSe2 system used as an example. It has been demonstrated that the factor limiting the stability of the homogeneous state of these materials is a change in the degree of filling of the conduction band due to the thermal broadening of the polaron band. This factor becomes substantial when the top of the polaron band intersects the Fermi level. It has been revealed that the decay of the homogeneous state leads to the precipitation of the intercalant. The morphology and structure of the precipitates formed in this decay in Fe x TiSe2 single crystals have been studied by transmission electron microscopy.  相似文献   

7.
Compounds in the pseudobinary Cu-TiSe2 intercalation system are directly synthesized from elements. The phase diagram of the system is investigated, the solubility limit of copper is measured, and the structure of the material is determined. In the copper concentration range up to 60 mol %, single crystals are grown and the temperature dependence of the electrical resistance is measured. It is demonstrated that, in the concentration range under investigation, the intercalation of the system with copper gives rise to a set of phenomena observed upon intercalation of alkali metals.  相似文献   

8.
Single crystals of the Cu x TiSe2 compound with x = 0.05, 0.09, and 0.33 have been grown. Resonance photoelectron Cu 3p-3d and 2d-3d spectra of the valence bands, the spectra of the core levels, and the L absorption spectra for titanium and copper have been obtained. It is shown that the degree of oxidation of titanium atoms is +4 and the state of copper atoms is close to the state of free copper ions. It is found that the spectra of the valence bands obtained under the Cu 3p and 2p resonance conditions radically differ. For the spectra in the Cu 2p excitation regime, several bands corresponding to different decay channels of the excited state are observed. According to calculations of the density of states, the 3d states of copper are filled incompletely; the occupancy of the 3d band of copper is 9.5 electrons per atom.  相似文献   

9.
The temperature dependence of the ac magnetic susceptibility of a single-crystal mixed rare-earth garnet Er2HoAl5O12 has been investigated within the range from 1.8 to 300 K in a zero constant field and in applied bias fields of up to 9 T. In the absence of a constant magnetic field the magnetic susceptibility followed the Curie–Weiss law. The application of a constant magnetic field caused a magnetic phase transition, the temperature of which increased with increasing magnetic field. The temperature of the maximum of the ac magnetic susceptibility, which is a characteristic of the phase transition, did not show a noticeable dependence on the frequency of the alternating magnetic field.  相似文献   

10.
The results of the measurements of the 6, 7Li and 23Na nuclear magnetic resonance (NMR) and 63, 65Cu nuclear quadrupole resonance in LiCu2O2 and NaCu2O2 quasi-one-dimensional compounds with a spin chains in the paramagnetic and magnetically ordered states are presented. The shape of the NMR line below T c = 24 and 13 K for LiCu2O2 and NaCu2O2, respectively, is characteristic of the incommensurate static modulation of the local magnetic field matching with the incommensurate spiral modulation of the magnetic moments. The differences in the shape of the NMR spectra of 23Na and 7Li are discussed in terms of the features of the crystal structure of LiCu2O2 and NaCu2O2.  相似文献   

11.
A large variety of glass and glass ceramics may be obtained by sol-gel process from hydrolysis of tetraethoxysilane. The transformation involves hydrolysis and polycondensation reactions leading to the growth of clusters that eventually collide together to form a gel. The structure and properties of the final product have been found to be strongly dependent on the initial conditions of preparation. Silica nanocomposites based on Fe2O3/SiO2 were prepared with the help of ultrasonic activation and subsequent annealing in nitrogen atmosphere or air with concentrations of iron oxide of about 20 to 30wt.%.  相似文献   

12.
FePt nanoparticles were synthesized by polyol process with chloride salts, and the equiatomic composition was surface modified with prussian blue (PB). From the magnetic studies, the fraction of PB present in the surface-modified fcc-FePt was found to be 18 %. The FePt nanoparticles with an average particle size of 5 nm forms cluster like morphology, which were embedded in the PB matrix. The electrocatalytic reduction of hydrogen peroxide (H2O2) by the PB-modified FePt nanoparticles was studied. The reduction peak current showed linear response for H2O2 in the concentration range up to 3.5 mM. The FePt nanoparticles did not exhibit significant H2O2 reduction whereas the PB-modified FePt showed reduction of H2O2 with the addition of 0.35 mM of H2O2.  相似文献   

13.
Co3O2BO3 and Co2FeO2BO3 single crystals with a ludwigite structure are fabricated, and their crystal structure and magnetic properties are studied in detail. Substituted ludwigite Co2FeO2BO3 undergoes two-stage magnetic ordering at the temperatures characteristic of Fe3O2BO3 (T N1 ≈ 110 K, T N2 ≈ 70 K) rather than Co3O2BO3 (T N = 42 K). This effect is explained in terms of preferred occupation of nonequivalent crystallographic positions by iron, which was detected by X-ray diffraction. Both materials exhibit a pronounced uniaxial magnetic anisotropy. Crystallographic direction b is an easy magnetization axis. Upon iron substitution, the cobalt ludwigite acquires a very high magnetic hardness.  相似文献   

14.
Mn0.5Zn0.5Fe2O4 ferrite nanoparticles with tunable Curie temperature and saturation magnetization are synthesized using hydrothermal co-precipitation method. Particle size is controlled in the range of 54 to 135 Å by pH and incubation time of the reaction. All the particles exhibit super-paramagnetic behaviour at room temperature. Langevin’s theory incorporating the interparticle interaction was used to fit the virgin curve of particle magnetization. The low-temperature magnetization follows Bloch spin wave theory. Curie temperature derived from magnetic thermogravimetric analysis shows that Curie temperature increases with increasing particle size. Using these particles magnetic fluid is synthesized and magnetic characterization is reported. The monolayer coating of surfactant on particle surface is confirmed using thermogravimetric measurement. The same technique can be extended to study the magnetic phase transition. The Curie temperature derived using this measurement complies with the low-temperature magnetic measurement. The room-temperature and high-temperature magnetization measurements are also studied for magnetic fluid systems. The magnetic parameters derived for fluid are in good agreement with those obtained for the particle system.  相似文献   

15.
The effects accompanying the ferroelastic phase transition in Hg2Br2 polycrystalline samples are compared in an x-ray diffraction study with similar effects observed to occur in Hg2Br2 single crystals. In particular, an analysis is made of the “orthorhombic” splitting of the basal plane reflections and the behavior with temperature of the Bragg and diffuse reflections from the X points of the Brillouin zone, which characterize the behavior of the order parameter and its fluctuations, respectively. Polycrystalline samples exhibit strong smearing of the phase transition effects originating from the existence of damaged surface layers and elastic and plastic strain fields which induce order parameter fluctuations over a wide temperature range.  相似文献   

16.
The nonlinear microwave absorption in the (CH3NH3)2CuBr4 antiferromagnetic crystal is investigated experimentally. The temperature and angular dependences of the parameters of nonlinear resonance and the dependences of these parameters on the microwave pump power are analyzed. It is found that the nonlinear properties deteriorate with decreasing temperature and the linear and nonlinear contributions are competitive in character.  相似文献   

17.
In this study, FeNi3/Al2O3 core-shell nanocomposites, where individual FeNi3 nanoparticles were coated with a thin layer of alumina, were fabricated by a modified sol-gel method. Several physical characterizations were performed on the samples of FeNi3/Al2O3 nanocomposites with different thickness of Al2O3 shell. The encapsulation of FeNi3 nanoparticles with alumina stops FeNi3 agglomeration during heat treatment, and prevents interaction among the closely spaced magnetic FeNi3 nanoparticles. The Al2O3 insulating shell improves the soft magnetic properties of FeNi3. The study of the complex permeability of the samples shows that the real part μ’ of the permeability of the sample with Al molar content of 20% (Al/(Fe+Ni)) is as high as 12, and independent of frequency up to at least 1 GHz. The tunneling magnetoresistance arising from the presence of the Al2O3 shell have also been studied.  相似文献   

18.
Zn0.93Co0.07O thin films infiltrated with nitrogen and aluminum were prepared by means of magneton sputtering. The structural and magnetic properties of the films were studied systematically. The materials were single phase (wurtzite structure) with surfaces showing signs of homogeneous growth. The films were ferromagnetic at room temperature, and magnetic domains could be clearly observed on the surfaces. In the case of Al infiltration, saturated magnetization increased with Al concentration increasing; whereas in the case of N infiltration, saturated magnetization decreased with the increase in N concentration. The results show that ferromagnetic interactions in Co-doped ZnO diluted magnetic semiconductor may be transferred by electrons. Supported by the National Natural Science Foundation of China (Grant No. 10674059) and the Major Project of National Basic Research Program of China (Grant No. 2005CB623605)  相似文献   

19.
Crystals of the KPb2Br5compound are investigated using polarized light microscopy and calorimetry. The birefringence and the angle of rotation of the optical indicatrix are measured in the temperature range 270–620 K. It is found that the KPb2Br5 crystal undergoes a first-order ferroelastic phase transition at temperatures T0↑ = 519.5 K and T0↓ = 518.5 K with a change in the enthalpy ΔH = 1300 ± 200 J/mol. This transition is accompanied by both twinning and the symmetry change mmm ? P21/c. It is revealed that the angle of rotation of the optical indicatrix exhibits an unusual behavior under variations in the temperature due to a strong temperature dependence of the birefringence.  相似文献   

20.
Formation of a long-range magnetic order is observed at low temperatures in NaCrSi2O6 and NaCrGe2O6 quasi-one-dimensional metal oxide compounds with a pyroxene structure. The first of these compounds, NaCrSi2O6, is an antiferromagnet with the Néel temperature T N =3 K, while the second, NaCrGe2O6, is a ferromagnet with the Curie temperature T C =6 K. From the measurements of magnetization and specific heat of these compounds, the main parameters of their magnetic subsystems are determined. In NaCrSi2O6, a spin-flip transition is observed. A change in the type of magnetic order that accompanies the replacement of Si by Ge can be attributed to a change in the parameters of the competing direct antiferromagnetic Cr-Cr and indirect ferromagnetic Cr-O-Cr interactions in isolated chains of CrO6 octahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号