首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Several Pd(II) complexes containing the potentially bidentate ligand 2-(diphenylphosphino)-1-methylimidazole, dpim, have been synthesized and characterized: [PdCl2(dpim)]n (1), [PdCl2(H2O)(dpim-κP)] (2), [PdClMe(μ-dpim-κPN)]2 (3) (previously described), [PdClMe(dpim-κP)2] (4), [Pd(C6F5)2(dpim-κP)2] (5) and [Pd(η3-2-Me-C3H4)(μ-dpim-κPN)]2[PF6]2 (6). The highly insoluble complex 1 dissolves in wet DMSO-d6 to give the water adduct 2 in which a hydrogen bond is established between one of the water hydrogens and the imidazolyl nitrogen. Two types of coordination mode have been found for the dpim ligand in these derivatives, with the ligand behaving as P monodentate and also as a P,N bridge. The transformations between 3 and 4 demonstrate the hemilability of the dpim ligand. Complex 6 was obtained as a mixture of two pairs of enantiomers (R,S)/(S,R) and (R,R)/(S,S). Analysis of the fluxional behaviour of 6, in which the allyl group acts as a “reporter ligand”, indicates that Pd-N bond rupture takes place - again providing evidence of the hemilabile character of the dpim ligand.  相似文献   

2.
Two types of Pd-complexes containing the new N,N′-ligands 2-[3-(4-alkyloxyphenyl)pyrazol-1-yl]pyridine (pzRpy; R = C6H4OCnH2n+1, n = 6 (hp), 10 (dp), 12 (ddp), 14 (tdp), 16 (hdp), 18 (odp)) (1-6), namely c-[Pd(Cl)2(pzRpy)] (7-10) and c-[Pd(η3-C3H5)(pzRpy)]BF4 (11-16), have been synthesised and characterised by different spectroscopic techniques. Those members of the second type containing the largest chains (R = ddp 13, tdp 14, hdp 15, odp 16) have been found to have liquid crystal properties showing smectic A mesophases. By contrast, neither the free ligands pzRpy nor their related c-[Pd(Cl)2(pzRpy)] complexes exhibited mesomorphism. The new synthesised metallomesogens are mononuclear complexes with an unsymmetrical molecular shape as deduced from the X-ray structures of c-[Pd(η3-C3H5)(pzRpy)]BF4 (R = hp, 11; dp, 12). Both compounds, which are isostructural, show a distorted square-planar environment on the palladium centres defined by the allyl and the bidentate pzRpy ligands. The crystal structure reveals that both the counteranion and the pzRpy ligand function as a source of hydrogen-bonding and intermolecular π?π contacts resulting in a 2D supramolecular assembly.  相似文献   

3.
The reaction of trans-1,2-diaminocyclohexane with enantiopure (R)-2-formyl-1-phosphanorbornadiene (1) takes place with efficient kinetic resolution and gives an easily separable mixture of the corresponding (S,S)-bis-imine (3) and (R)-mono-imine (4). The absolute configuration of 3 has been established by X-ray crystal structure analysis. The coordination chemistry of enantiopure 3 with Pd(II), Rh(I), and Ru(II) has been investigated. The reaction of [PdCl2(cod)] mainly affords a binuclear complex 6 whose structure has been established by X-ray analysis. One unit is coordinated to one P and one PdCl+ unit is tricoordinated to the other P and the two N. The two square planar units are parallel and the Pd?Pd distance is 3.1787(5) Å. The reaction of [RhCl(cod)]2 gives the very reactive tetracoordinate cationic [Rh(P2N2)]+ species 7 which is able to activate one C-Cl bond of chloroform to give the dichloromethyl-Rh complex (8) whose octahedral structure has been ascertained by X-ray analysis.  相似文献   

4.
Three novel CoII coordination polymers [Co(Dpq)2(1,4-NDC)0.5] · (1,4-HNDC) (1), [Co(Dpq)(2,6-NDC)] (2), and [Co2(Dpq)2(BPEA)4(H2O)] · H2O (3) have been obtained from hydrothermal reaction of cobalt nitrate with the mixed ligands dipyrido[3,2-d:2′,3′-f]quinoxaline (Dpq) and three dicarboxylate ligands with different spacer length [1,4-naphthalene-dicarboxylic acid (1,4-H2NDC), 2,6-naphthalene-dicarboxylic acid (2,6-H2NDC) and biphenylethene-4,4′-dicarboxylic acid (BPEA)]. All these complexes are fully structurally characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveal that complex 1 is infinite one-dimensional (1-D) chains bridged by 1,4-NDC ligands, which are extended into a two-dimensional (2-D) supramolecular network by π-π interactions between the Dpq molecules. Complex 2 is a distorted three-dimensional (3-D) PtS network constructed from infinite Co-O-C rod units. Complex 3 has a 5-fold interpenetrated 3-D structure with diamondoid topology based on dinuclear [Co2(CO2)22-OH2)N4O2] units and BPEA molecules. The different structures of complexes 1-3 illustrate the influence of the length of dicarboxylate ligands on the self-assembly of polymeric coordination architectures. In addition, the thermal properties of complexes 1-3 and fluorescent properties of complexes 2 and 3 have been investigated in the solid state.  相似文献   

5.
Reaction of bis(amide) sodium Na2[(1R,2R)-(−)-1,2-(NSiMe3)2-C6H10] (Na2[L1]) with Ti(OiPr)2Cl2 in different conditions gave mixed-ligand complexes [Ti(OiPr)Cl][L1] (1) or [Ti(OiPr)2Cl]2[L1] (2); 2 is a dinuclear titanium example in which Ti atoms are bridged by nitrogen and oxygen atoms simultaneously forming a distorted rhombic core. Reaction of the amine-amidinate ligand (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-(NHSiMe3)-C6H10(Li[L2]) or rarely linked bis(amidinate) ligand Li2[(1R,2R)-(−)-1,2-{NC(Ph)N(SiMe3)}2-C6H10](Li2[L3]) with ZrCl4 yielded the unbridged and bridged bis(amidinate) complexes ZrCl2[L2]2 (3) and [ZrCl2(THF)][L3] (4), respectively; Moreover, the reaction of (1R,2R)-(−)-1-Li[NC(Ph)N(SiMe3)]-2-Li(NSiMe3)C6H10(Li2[L2]) with Ti(OiPr)2Cl2 gave a new type of tridentate amido-amidinate product [Ti(OiPr)2][L2] (6), which is a distinct model compared to [Ti(OiPr)2Cl][L2] (5) yielded from Li[L2]. All the products have been characterized by X-ray crystallography and the structural studies are presented detailedly comparing with relevant compounds.  相似文献   

6.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

7.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

8.
A new series of DTPA-N,N″-bis(amide) ligands functionalized by alkyl carboxylates on the amide side-arms (1a1l) and their Gd(III) complexes of the type [Gd(1)(H2O)] · xH2O (2a2l) were synthesized and characterized by analytical and spectroscopic techniques. Potentiality of 2a2l as contrast agent for magnetic resonance imaging (MRI CA) was investigated by measuring some relevant physicochemical properties such as (i) the protonation constants of 1a1l, (ii) thermodynamic and conditional stability constants of 2a2l, (iii) the selectivity (pGd) of 1a1l for the Gd(III) ion over the endogenous metal ions such as Zn(II), Ca(II), and Cu(II), and (iv) the relaxivities (R1 and R2) of 2a2l in aqueous and aqueous HP-β-CD solutions. Comparative studies reveal that most of new Gd(III) complexes show enhanced thermodynamic stability and selectivity as compared with those of [Gd(DTPA-BMA)(H2O)] (DTPA-BMA = N,N″-di(methylcarbamoylmethyl)diethylenetriamine-N,N′,N″-triacetate). Also enhanced with 1a1l (except 1f and 1h) is affinity for Gd(III) as compared with [DTPA-BMA]3− under physiological conditions. The relaxivities (R1 and R2) of aqueous solutions of 2a2l, on the other hand, drop significantly as compared with [Gd(DTPA-BMA)(H2O)] although they increase dramatically (6–10 fold) in aqueous hydroxypropyl-β-cyclodextrin (HP-β-CD) solutions.  相似文献   

9.
Compound MoO2Cl2(THF)2 reacts with two equivalents of 1,3-dialkyl substituted 4,5-dimethylimidazol-2-ylidenes to give the dioxomolybdenum(VI) complexes MoO2Cl2(LR)2 [R = Me (1), i-Pr (2)]. Treatment of MoO2Cl2(THF)2 with one equivalent of the N-heterocyclic carbenes LMe, Li-Pr and C1Ln-Bu (LMe = 1,3,4,5-tetramethylimidazol-2-ylidene, Li-Pr = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, and C1Ln-Bu = 1,3-dibutyl-4,5-dichloroimidazol-2-ylidene) affords the monocarbene adducts MoO2Cl2(LR) [R = Me (3), i-Pr (4)] and MoO2Cl2(C1Ln-Bu) (5), respectively. Decomposition of complexes 1-5 affords a molybdenum oxychloride anion [Mo2O5Cl4]2− as an imidazolium salt.  相似文献   

10.
Ruthenium piano-stool complexes incorporating the new bidentate aminoalkylphosphine ligand 1,2-bis(dipyrrolidin-1-ylphosphino)ethane (dpyrpe, I) or its monodentate counterpart bis(pyrrolidin-1-yl)methylphosphine (pyr2PMe, II) have been prepared, [(C5R5)RuCl(PP)] (R = Me and PP = dpyrpe, 1; R = Me and PP = (pyr2PMe)2, 2; R = H and PP = dpyrpe, 3). Complexes 2 and 3 have been characterized by X-ray crystallography. Complexes 1 and 2 react with NaBAr4f in the presence of ligand L to yield [CpRu(L)(dpyrpe-κ2P)][BArf4] (L = MeCN, 4a; CO, 4b; N2, 4c) and [CpRu(L)(pyr2PMe)2][BAr4f] (L = MeCN, 5a; CO, 5b; N2, 5c). Complex 4a was crystallographically characterized. The CO complexes 4b and 5b were examined using IR spectroscopy in an attempt to establish the electron-donating capabilities of I and II. Complex 1 oxidatively adds H2 in the presence of NaBAr4f to yield the Ru(IV) dihydride [CpRuH2(dpyrpe-κ2P)][BAr4f], 7.  相似文献   

11.
The reaction between 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) in a 1:1 M/L ratio in CH2Cl2 or acetonitrile solution, respectively, gave the complexes trans-[MCl2(bddf)] (M = Pd(II) (1), Pt(II) (4)), and in a 2:1 M/L ratio led to [M2Cl4(bddf)] (M = Pd(II) (2), Pt(II) (5)). Treatment of 1 and 4 with AgBF4 and NaBPh4, respectively, gave the compounds [Pd(bddf)](BF4)2 (3) and [Pt(bddf)](BPh4)2 (6). When complexes 3 and 6 were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1) for 24 h, analogous complexes to 1 and 4 with bromides instead of chlorides bonded to the metallic centre were obtained. These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 1H{195Pt}, 13C{1H}, 195Pt{1H} NMR, HSQC and NOESY spectroscopies. The X-ray crystal structure of the complex [Pd(bddf)](BF4)2 · H2O has been determined. The metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether groups.  相似文献   

12.
2-(N-aryliminomethyl)pyrrole precursors (2,6-R2-C6H3-NCH-2-C4H3NH) (R = Me, IH; R = iPr, IIH) were prepared and transformed into their corresponding sodium salts (Na+I and Na+II) by treatment with NaH. Both salts readily react with [NiBr2(DME)] (DME = 1,2-dimethoxyethane) to give the respective bis{2-(N-arylimino-κN-methyl)pyrrolide-κN}nickel(II) complexes (1, 2) in almost quantitative yields. The oxidative addition of IH to [Ni(COD)2] (COD = 1,5-cyclooctadiene) results in the formation of 3, which is a mono(iminomethylpyrrolide)-η3-(cyclic-allyl)-type organonickel(II) complex. The crystal structure of compound 1 has been established by X-ray diffraction studies.  相似文献   

13.
14.
The complexes trans-[RuCl2(L){(S,S)-iPr-pybox}] ((S,S)-iPr-pybox = 2,6-bis[4′-(S)-isopropyloxazolin-2′-yl]pyridine, L = PMe3 (1), P(OMe)3 (2), PPh2(CH2CHCH2) (3), CNBn (5), CNCy (6) and MeCN (7)) have been synthesized by substitution of ethylene on the precursor trans-[RuCl2(η2-C2H4){(S,S)-iPr-pybox}]. This complex also reacts with cyclooctadiene (cod) or norbornadiene (nbd) and NaPF6, in refluxing methanol, giving the coordination compounds [RuCl(η4-cod){(S,S)-iPr-pybox}][PF6] (8) and [RuCl(η4-nbd){(S,S)-iPr-pybox}][PF6] (9). The structures of complexes [RuCl(CO)(PPh3)(H-pybox)][BF4] (H-pybox = 2,6-bis(dihydrooxazolin-2′-yl)pyridine) (4), 6 and 8, have been resolved by X-ray diffraction methods. The catalytic activity of the new complexes in transfer hydrogenation of acetophenone has also been examined.  相似文献   

15.
The preparation of the N-heterocyclic carbene coordinated gallium complexes [GaH3(IXy)] (1), [GaH3(IDipp)] (2), [GaClH2(IMes)] (3) and [GaCl2H(IMes)] (4), where IXy = 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene, IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene and IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, are reported. All four complexes have been characterised by 1H, 13C NMR and IR spectroscopy and, for complexes 2, 3 and 4, single crystal X-ray structure determination. These compounds represent some of the most thermally stable molecular gallium hydrides known, with 4 being the most thermally stable gallium hydride reported (dec. 274 °C). These remarkable thermal stabilities translate to significant aerobic stability such that all four compounds may be handled in dry air without significant decomposition. Compounds 2, 3 and 4 exist as distorted tetrahedra in the solid state with gallium to carbene C-donor bonds that shorten with increasing Lewis acidity of the gallium centre. Compound 2 co-crystallizes with 1 equiv. of 2,6-diisopropylphenylaniline and exhibits several weak intermolecular bonding interactions in the solid-state.  相似文献   

16.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

17.
This paper describes a substantial enhancement of the aminopyridinato ligand stabilized early transition metal chemistry by introducing the sterically very demanding 2,6-dialkylphenyl substituted aminopyridinato ligands derived from (2,6-diisopropylphenyl)-[6-(2,6-dimethylphenyl)-pyridin-2-yl]-amine (1a-H, ApH) and (2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)-pyridin-2-yl]- amine (1b-H, ApH). The corresponding bis aminopyridinato zirconium dichloro complexes, [Ap2ZrCl2] (3a) and [Ap2ZrCl2] (3b) and the dimethyl analogues, [Ap2ZrMe2] (4a) and [Ap2ZrMe2] (4b) (Me = methyl) were synthesized, using standard salt metathesis routes. Single-crystal X-ray diffraction was carried out for the dichloro derivatives. Both zirconium metal centers have a distorted octahedral environment with a cis-orientation of the chloride ligands in 3a and a closer to trans-arrangement in 3b. The dimethyl derivatives are proven to be highly active ethylene polymerization catalysts after activation with [R2N(Me)H][B(C6F5)4] (R = C16H33-C18H37). During attempted co-polymerizations of α-olefins (propylene) and ethylene high activity and selectivity for ethylene and nearly no co-monomer incorporation was observed. Increasing the steric bulk of the ligand going from (2,6-dimethylphenyl) to (2,4,6-triisopropylphenyl) substituted pyridines, switches the catalyst system from producing long chain α-olefins to polymerization of ethylene in a living fashion. In contrast to the dimethyl complexes only [Ap2ZrCl2] in the presence of MAO at elevated temperature gave decent polymerization activity. NMR investigations of the reaction of dichloro complexes with 25 equiv. of MAO or AlMe3 at room temperature revealed, that [Ap2ZrCl2] decomposes under ligand transfer to aluminum and formation of [ApAlMe2], while [Ap2ZrCl2] remains almost unreacted under the same conditions. The aminopyridinato dimethyl aluminum complexes, [ApAlMe2] (5a) and [ApAlMe2] (5b) were synthesized independently and structurally characterized. The aluminum complexes 5a and b show no catalytic activity towards ethylene, when “activated” with[R2N(Me)H][B(C6F5)4].  相似文献   

18.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

19.
The reaction of Mn2(CO)10 with tert-butyl isocyanide in the presence of 10 bar of carbon monoxide leads to the formation of cis- and trans-[Mn(tBuNC)4(CN)(CO)], 1a and 1b, in good yields together with [Mn(tBuNC)6]CN (2), as a minor product. Nevertheless, the reaction pathway highly depends on the reaction conditions. An interesting side-product is obtained, if chloroform is used during the workup procedure. Compound 3 is composed of cationic [Mn(tBuNC)5(CO)] units as well as dinuclear anionic [Mn(tBuNC)4(CO)(μ-CN)MnCl3] moieties. If no additional CO pressure is applied to the system, the organic product N,N′-di-tert-butyl-3,5-bis-tert-butylimino-4-phenyl-cyclopent-1-ene-1,2-diamine (4), is formed in considerable amount. Compound 4 most probably is produced via a double benzylic C-H activation of the solvent toluene and the oligomerization of four isocyanide moieties. The reaction of 1b with Co(NO3)2 leads to the isolation of the trinuclear cyanide bridged coordination compound {[Mn(tBuNC)4) (CO) (μ-CN)]2Co(NO3)2}, 5, in which the cobalt atoms are tetrahedrally surrounded by the two cyanide ligands and the η1-coordinated nitro groups. In contrast to the reaction of 1b, treatment of the dicyano complexes cis- or trans-[Ru(tBuNC)4(CN)2] with Co(NO3)2 results in the formation of the coordination polymers {[Ru(tBuNC)4(CN)2]Co(NO3)2}n, 7 (trans) and 9 (cis). All new compounds are characterized by X-ray diffraction experiments.  相似文献   

20.
Treatment of (RH2C)2C5H3N-2,6 (R=SiMe3) with BunLi followed by addition of Me3SiCl gave the tetrasilyl pyridine derivative (R2HC)2C5H3N-2,6 1 in high yield. Further lithiation of 1 with BunLi and reaction of the intermediate with PhCN led to the new lithium-1-azaallyl [Li{N(R)C(Ph)C(R)(C5H3N-2,6)(CHR2)}]22, while metallation of the previously described di-lithium compounds [Li{N(R)C(R)CH}2(C5H3-2,6)]Li(tmen)n (R=SiMe3, R=But, n=1 or R=SiMe3, R=Ph, n=2) with PdCl2(PhCN)2 yielded the novel metallacycles [Pd{{N(H)(R)C(R)CH}{N(SiMe2CH2)C(R)CH}C5H3N-2,6}] 3 (R=But) and [Pd{{N(R)C(R)CH}{N(R)(H)C(R)CH}C5H3N-2,6}2] (R=Ph) 4 in moderate to low yield. Compound 3 is unusual in being the first example of a crystallographically characterised PdNSiC heterocycle which is believed to be formed via an intramolecular CH-activation of a trimethylsilyl group by Pd(II). All four compounds were fully characterised by NMR-spectroscopy, microanalysis (not 4) and X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号