首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
1,8-Naphthyridine (napy) and terpyridine-analogous (N,N,C) tridentate ligands coordinated ruthenium (II) complexes, [RuL(napy-κ2N,N′) (dmso)](PF6)2 (1: L=L1=N″-methyl-4′-methylthio-2,2′:6′,4″-terpyridinium, 2: L = L2 = N″-methyl-4′-methylthio-2,2′:6′,3″-terpyridinium) were prepared and their chemical and electrochemical properties were characterized. The structure of complex 1 was determined by X-ray crystallographic study, showing that it has a distorted octahedral coordination style. The cyclic voltammogram of 1 in DMF exhibited two reversible ligand-localized redox couples. On the other hand, the CV of 2 shows two irreversible cathodic peaks, due to the Ru-C bond of 2 containing the carbenic character. The IR spectra of 1 in CO2-saturated CH3CN showed the formation of Ru-(η1-CO2) and Ru-CO complexes under the controlled potential electrolysis of the solution at −1.44 V (vs. Fc/Fc+). The electrochemical reduction of CO2 catalyzed by 1 at −1.54 V (vs. Fc/Fc+) in DMF-0.1 M Me4NBF4 produced CO with a small amount of HCO2H.  相似文献   

2.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

3.
Dynamic NMR of 1,3,5-tris(trifluoromethylsulfonyl)-1,3,5-triazinane reveals two dynamic processes: ring inversion leading to equilibrium between two degenerate rotamers of Cs symmetry (ΔG = 13.5 kcal/mol), and rotation about the S-N bond leading to equilibrium between the Cs (more stable) and C3v (2.12 kcal/mol less stable) rotamers (ΔG = 13.0 kcal/mol).  相似文献   

4.
Three complexes of composition [CrL(X)3], where L = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and X = Cl, N3, NCS are synthesized. They are characterized by IR, UV–Vis, fluorescence, EPR spectroscopic, and X-ray crystallographic studies. Structural studies reveal that the Cr(III) ion is coordinated by three N atoms of L in a meridional fashion. The three anions occupy the other three coordination sites completing the mer-N3Cl3 (1) and mer-N3N3 (2 and 3), distorted octahedral geometry. The Cr–N2 has a shorter length than the Cr–N1 and Cr–N3 distances and the order Cr–N(NCS) < Cr–N(N3) < Cr–Cl is observed. They exhibit some of the d–d transitions in the visible and intra-ligand transitions in the UV regions. The lowest energy d–d transition follows the trend [CrLCl3] < [CrL(N3)3] < [CrL(NCS)3] consistent with the spectrochemical series. In DMF, they exhibit fluorescence having π → π character. All the complexes show a rhombic splitting as well as zero-field splitting (zfs) in X-band EPR spectra at 77 K.  相似文献   

5.
A new dithioligand [N′-(2-methoxybenzoyl)hydrazinecarbodithioate] ethyl ester (H2mbhce, 1) formed complexes [M(Hmbhce)2]n {M = Mn(II), Cd(II)} which have been characterized with the help of elemental analyses, magnetic susceptibility measurements, IR, UV–Vis, 1H and 13C NMR and mass spectrometry. [Mn(Hmbhce)2]n (2) crystallized in monoclinic system with space group P21/n. In the polymeric structure of 2, the ligand acts as an uninegative tridentate N(1), O(1), S(3) donor and forms a five membered chelate ring with N(1), C(2) and O(1). The intermediate bond lengths (between single and double bond distances) O(1)–C(2) = 1.241(3), N(2)–C(2) = 1.325(3), N(1)–N(2) = 1.393(2), N(1)–C(8) = 1.311(3) ? and C(8)–S(3) = 1.704(2) Å suggest considerable delocalization of charge which develops slightly aromatic character in the chelate ring.  相似文献   

6.
The reaction of lead(II) acetate in methanol with thiosemicarbazones derived from β-keto esters and β-keto amides (HTSCs) afforded two lead(II) thiosemicarbazonates and numerous homoleptic ([PbL2]) and/or heteroleptic ([Pb(OAc)L]) complexes containing deprotonated pyrazolones L formed by metal-induced cyclization of the starting HTSC ligands. All the complexes isolated were characterized by IR spectroscopy in the solid state and by 1H and 13C NMR spectroscopy in DMSO solution; in addition, crystals containing [Pb(L6)2] and [Pb(L7)2] were examined by X-ray crystallography. [Pb(L6)2] · 0.5H2O · 0.3MeOH (HL6 = 4-ethyl-2,5-dihydro-3-methyl-5-oxo-1H-pyrazole-1-carbothiamide) showed three types of molecule with significant structural differences that appear to be determined by packing interactions. In all three molecules the Pb?Pb distances are very short [3.6096(8)–3.7562(8) Å], but density-functional-theoretic calculations at the B3LYP level do not support the existence of Pb–Pb bonds. In [Pb(L7)2] (HL7 = N-ethyl-2,5-dihydro-3-methyl-5-oxo-1H-pyrazole-1-carbothiamide) all the molecules are of a single type, and they are linked in a three-dimensional network by weak intermolecular Pb?O bonds.  相似文献   

7.
8.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

9.
The aroylhydrazone Schiff base ligands (E)-N’-(2-hydroxybenzylidene)benzohydrazide = H2L1, (E)-N’-(2-hydroxy-3-methoxybenzylidene)benzohydrazide = H2L2 and = (E)-N’-(5-bromo-2-hydroxybenzylidene)benzohydrazide = H2L3 gave the vanadium(V)oxo-aroylhydrazone complexes [VVOL1(OCH3)(OHCH3] (1), [VVOL2(OCH3)(OHCH3]·CH3OH (2) and [VVOL3(OCH3)(OHCH3] (3) on reaction with vanadium(IV) oxide acetylacetonate. The complexes were characterized by spectroscopic methods in the solid state (IR) and in solution (UV–Vis, 1H NMR). Single crystal X-ray analysis was performed with 3. In methanol solution six-coordinated VVOL3(OCH3)(OHCH3) was formed. VIV was oxidized to Vv by aerial oxygen in the synthesis. In the VO5N coordination sphere the alcohol oxygen lies trans to the oxo oxygen. The general V–O bond length order is oxo < methoxylato < phenoxidic < enolato < alcoholic. The complexes are mononuclear, but intermolecular O–H?N hydrogen bonding affords a zigzag chain. DFT calculations on complex 3 reproduced the geometric parameters, IR and UV–Vis spectroscopic data well in a reasonable range.  相似文献   

10.
A series of mononuclear complexes based on lanthanide ions has been synthesized and X-ray characterized. The compounds [LnIIIL2(NO3)3(H2O)2] (Ln = La, Ce, Pr, Nd, Sm, Gd and Tm; L = 2,6-bis(2-formylphenoxymethyl)pyridine) are found to be isomorphous and isostructural. Ligand L systematically coordinates through one carbonyl functionality, and the resulting complexes are placed on a twofold axis in crystals belonging to C2/c space-group. Emission spectra for Ln = La, Pr, Nd revealed a correlation between the Ln–O coordination bond length and the photoluminescent properties of the complexes, in line with a Förster–Dexter mechanism for intramolecular energy transfer. Ligand L is therefore a suitable sensitizer for lanthanide ions.  相似文献   

11.
12.
13.
The synthesis, characterization and reactivity of ytterbium monochloride supported by tridentate Schiff base ligands are described. The metathesis reaction of anhydrous YbCl3 with 1 equivalent of the sodium salt of a Schiff base, [{LNa(THF)}2] (1) [LH = 3,5-But2-2-(OH)-C6H2CHN-8-C9H6N], gave the ytterbium Schiff base monochloride complex L2YbCl (2). Complex 2 reacted with NaOAr (OAr = OC6H3But-2-Me-4) in a 1:1 molar ratio to form the desired aryloxo derivative L2Yb(OAr) (3). Complex 3 can also be prepared by the one-pot reaction of the Schiff base HL, n-BuLi, YbCl3 and NaOAr in a 2:2:1:1 molar ratio. However, an unprecedented ytterbium aryloxide LL′Yb(OAr) (4) (L′ = 3,5-But2-2-(O)C6H2CH(C4H9)-NH-8-C9H6N) can be isolated in low yield as a byproduct in the later case. Reaction of complex 2 with 1 equivalent of (CH2CH-CH2)MgBr in THF afforded the unexpected complex [Mg(H2N-8-C9H6N)Cl(THF)3]Br (5). Complexes 2-5 were fully characterized by elemental analysis and X-ray diffraction.  相似文献   

14.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

15.
16.
1,3,5-Tris(bromomethyl)-1,3,5-trialkylcyclohexanes (alkyl = methyl, n-propyl) were prepared. These are the first examples of 1,3,5-tris(halomethyl)-1,3,5-trialkylcyclohexanes. One synthetic method directly converted the corresponding triols with PPh3Br2, where an excess of the bromination reagent and high temperature (175 °C) were required. Stoichiometric use of PPh3Br2 under mild conditions, successfully employed for the synthesis of the parent tris(bromomethyl)cyclohexane, did not lead to the desired tribromides but rather to cyclic ethers. Proximity effects triggered by the 1,3,5-alkyl groups strongly influence the reactivity of such highly substituted cyclohexanes. An alternative synthetic access to the tris(bromomethyl) compounds was also developed, using 1,3,5-tris(triflatomethyl)-1,3,5-trialkylcyclohexanes (triflato = F3CSO3) as synthetic intermediates. An X-ray crystal structure of 1,3,5-tris(bromomethyl)-1,3,5-trimethylcyclohexane was obtained.  相似文献   

17.
18.
New μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = R″ = Me, 3a; R = Me, R′ = R″ = Et, 3b; R = Me, R′ = R″ = Ph, 3c; R = CH2Ph, R′ = R″ = Me, 3d; R = CH2Ph, R′ = R″ = COOMe, 3e; R = CH2 Ph, R′ = SiMe3, R″ = Me, 3f) have been obtained b yreacting the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(R″)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (2a-f) with NaBH4. The formation of 3a-f occurs via selective hydride addition at the iminium carbon (Cα) of the precursors 2a-f. By contrast, the vinyliminium cis-[Fe2{μ-η13-Cγ (R′) = Cβ(R″)Cα = N(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (R′ = R″ = COOMe, 4a; R′ = R″ = Me, 4b; R′ = Prn, R″ = Me, 4c; Prn = CH2CH2CH3, Xyl = 2,6-Me2C6H3) undergo H addition at the adjacent Cβ, affording the bis-alkylidene complexes cis-[Fe2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (5a-c). The cis and trans isomers of [Fe2{μ-η13-Cγ(Et)Cβ(Et)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4d) react differently with NaBH4: the former reacts at Cα yielding cis-[Fe2{μ-η13-Cγ(Et)Cβ(Et)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], 6a, whereas the hydride attack occurs at Cβ of the latter, leading to the formation of the bis alkylidene trans-[Fe2{μ-η12-C(Et)C(H)(Et)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (5d). The structure of 5d has been determined by an X-ray diffraction study. Other μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (R′ = R″ = Ph, 6b; R′ = R″ = Me, 6c) have been prepared, and the structure of 6c has been determined by X-ray diffraction. Compound 6b results from treatment of cis-[Fe2{μ-η13-Cγ(Ph)Cβ(Ph)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4e) with NaBH4, whereas 6c has been obtained by reacting 4b with LiHBEt3. Both cis-4d and trans-4d react with LiHBEt3 affording cis-6a.  相似文献   

19.
A convenient synthetic method for the preparation of organothiomethylpyridine ligands 2-(RSCH2)C5H4N (R = Ph (L1), Me (L2)), 2-MeS–6-Me-C5H3N (L3), and 2-MeS–4-Me-C5H3N (L4) via the initial lithiation of substituted 2-picolines followed by the nucleophilic reaction with a diorganyldisulfide is described. The complexes [PtBr2L] (L = L1L4) have been prepared in good to high yields as yellow solids with low solubility in organic solvents. The solid state structures of the complexes have been determined, showing the spatial arrangement of the complexes to depend significantly upon varying substituents within the ligand. The complexes undergo oxidation by bromine to form the tetravalent complexes [PtBr4(L)] (L = L1L4). The solid state structures of [PtBr4(L2)] and [PtBr4(L4)] have been determined, and shown to be monomeric with the ligand chelating the platinum centre.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号