首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

2.
This work presents cyclic voltammetry and double potential step chronoamperometry experiments corresponding to the electrochemical reduction of the substituted 1,10-phenanthroline ligands in the coordination compounds [Ru(pdto)(1,10-phenanthroline)]Cl2 (1), [Ru(pdto)(5,6-dimethyl-1,10-phenanthroline)]Cl2 (2), [Ru(pdto)(4,7-diphenyl-1,10-phenanthroline)]Cl2 (3), [Ru(pdto)(4,7-dimethyl-1,10-phenanthroline)]Cl2 (4) and [Ru(pdto)(3,4,7,8-tetramethyl-1,10-phenanthroline)]Cl2 (5). These studies were performed in order to evaluate the stability of the electrogenerated chemical species. An ECi mechanism for all the complexes was proposed and the rate constant value (k1) for the chemical coupled reaction was estimated. The stability is discussed in terms of the rate constant value (k1) and the π*-acceptor properties.  相似文献   

3.
Reactions of [Ru(PPh3)3Cl2] with ROCS2K in THF at room temperature and at reflux gave the kinetic products trans-[Ru(PPh3)2(S2COR)2] (R = nPr 1, iPr 2) and the thermodynamic products cis-[Ru(PPh3)2(S2COR)2] (R = nPr 3, iPr 4), respectively. Treatment of [RuHCl(CO)(PPh3)3] with ROCS2K in THF afforded [RuH(CO)-(S2COR)(PPh3)2] (R = nPr 5, iPr 6) as the sole isolable products. Reaction of [RuCl2(PPh3)3] with tetramethylthiuram disulfide [Me2NCS2]2 gave a Ru(III) dithiocarbamate complex, [Ru(PPh3)2(S2CNMe2)Cl2] (7). This reaction involved oxidation of ruthenium(II) to ruthenium(III) by the disulfide group in [Me2NCS2]2. Treatment of 7 with 1 equiv. of [M(MeCN)4][ClO4] (M = Cu, Ag) gave the stable cationic ruthenium(III)-alkyl complexes [Ru{C(NMe2)QC(NMe2)S}(S2CNMe2)(PPh3)2][ClO4] (Q = O 8, S 9) with ruthenium-carbon bonds. The crystal structures of complexes 1, 2, 4·CH2Cl2, 6, 7·2CH2Cl2, 8, and 9·2CH2Cl2 have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry in an electron-rich sulfur coordination environment. The 1,1′-dithiolate ligands bind to ruthenium with bite S-Ru-S angles in the range of 70.14(4)-71.62(4)°. In 4·CH2Cl2, the P-Ru-P angle for the mutually cis PPh3 ligands is 103.13(3)°, the P-Ru-P angles for other complexes with mutually trans PPh3 ligands are in the range of 169.41(4)-180.00(6)°. The alkylcarbamate [C(NMe2)QC(NMe2)S] (Q = O, S) ligands in 8 and 9 are planar and bind to the ruthenium centers via the sulfur and carbon atoms from the CS and NC double bonds, respectively. The Ru-C bond lengths are 1.975(5) and 2.018(3) Å for 8 and 9·2CH2Cl2, respectively, which are typical for ruthenium(III)-alkyl complexes. Spectroscopic properties along with electrochemistry of all complexes are also reported in the paper.  相似文献   

4.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

5.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

6.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

7.
The reactions of trans-[MoO(ONOMe)Cl2] 1 (ONOMe = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) dianion) and trans-[MoO(ONOtBu)Cl2] 2 (ONOtBu = methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate) dianion) with PhNCO afforded new imido molybdenum complexes trans-[Mo(NPh)(ONOMe)Cl2] 3 and trans-[Mo(NPh)(ONOtBu)Cl2] 4, respectively. As analogous oxotungsten starting materials did not show similar reactivity, corresponding imido tungsten complexes were prepared by the reaction between [W(NPh)Cl4] with aminobis(phenol)s. These reactions yielded cis- and trans-isomers of dichloro complexes [W(NPh)(ONOMe)Cl2] 5 and [W(NPh)(ONOtBu)Cl2] 6, respectively. The molecular structures of 4, cis-6 and trans-6 were verified by X-ray crystallography. Organosubstituted imido tungsten(VI) complex cis-[W(NPh)(ONOtBu)Me2] 7 was prepared by the transmetallation reaction of 6 (either cis or trans isomer) with methyl magnesium iodide.  相似文献   

8.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

9.
A new class of azolate ligands, deriving from the equimolar condensation of 3,5-diamino-1,2,4-triazole with salicylaldehyde (H3L1) and o-anisaldehyde (H3L2) was prepared. In their anionic form, these species act as bridging moieties upon coordination to Cu(I) and Ag(I), giving rise to the formation of dinuclear complexes with the ligand in the typical N,N′-exobidentate conformation. The copper derivative [Cu(H2L1)(CH3CN)]2 (1) showed attractive reactivity in the replacement of the labile acetonitrile molecules. In particular, it was possible to isolate a dinuclear copper(I)-carbonyl complex [Cu(H2L1)(CO)]2 (4), by substitution of the nitrile with carbon monoxide. Moreover, the reaction of 1 with ethyl diazoacetate (EDA) in CH2Cl2 afforded a mono-carbene product, as established by 13C NMR data. Finally, the copper derivative 1 proved to be a highly diastereoselective catalyst in olefin cyclopropanation in the presence of ethyl diazoacetate. In the case of internal alkenes a trans:cis ratio of up to 97:3 was reached. The X-ray structure of a dinuclear Ag(I) complex, namely [Ag(H2L1)(PPh3)]2 (3), obtained by reacting the polymeric [Ag(H2L1)]n (2), with triphenylphosphine, is also reported.  相似文献   

10.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

11.
The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [η2-N3]Ru(η6-Ar) (1) or {[N3]Ru}2(μ-N2) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N3]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride.  相似文献   

12.
Two diethyl phosphonated phosphine ligands of formula Ph2P(CH2)3PO3Et2 (ligand L) and Ph2P(4-C6H4PO3Et2) (ligand L′) were used to prepare different complexes of platinum(II) (1, cis-PtCl2L2; 2, trans-PtCl2L2·H2O; 3A and 3B, cis- and trans-PtCl2L′2) and palladium(II) (4, [PdCl2L]2; 5, trans-PdCl2L2·H2O; 6, trans-PdCl2L′2·CH2Cl2). The single-crystal X-ray structure analyses of complexes 1, 2, 4-6 indicate that complexation involved only the phosphine end, whereas the strong polarization of the PO bond was highlighted by the formation of hydrogen bonds with a water molecule in 2 and 5, and with a dichloromethane molecule in 6, with an exceptionally short CH?O hydrogen bond length (C?O separation 3.094(3) Å).  相似文献   

13.
The acetate bearing dithioether, sodium di(2-carboxymethylsufanyl)maleonitrile, L1 upon reaction with [RuII(bpy)2Cl2]·2H2O, [RuII(phen)2Cl2]·2H2O, [RuIII(bpy)2Cl2]+ or [RuIII(phen)2Cl2]+ in methanol formed complexes of the type [(bpy)2Ru{S2(CH2COO)2C2(CN)2}], (1), [(phen)2Ru{S2(CH2COO)2C2(CN)2}], (2), [(bpy)2Ru{(OOCCH2)2S2C2(CN)2}]+, (5) and [(phen)2Ru{(OOCCH2)2S2C2(CN)2}]+, (6) respectively. Four other Ru(III) complexes with di(benzylsulfanyl)maleonitrile, L2, [(bpy)2Ru{S2(PhCH2)C2(CN)2}]3+, (7) and [(phen)2Ru{S2(PhCH2)2C2(CN)2}]3+, (8), and with acetate, [(bpy)2Ru(OOCCH3)2]+, (9) and [(phen)2Ru(OOCCH3)2]+, (10) were also synthesized. In the cyclic voltammetry, complexes (1) and (2) exhibited quasireversible oxidation waves at 1.01 and 1.02 V vs. Ag/AgCl over GC electrode in DMF, while the corresponding Ru(III) L1 complexes (5) and (6) exhibit reversible oxidation at E1/2 0.59 and 0.58 V, respectively, under identical conditions. This is unlike the voltammetric behavior of the Ru(II) and Ru(III) L2 complexes, wherein the complex pairs (3), (7) and (4), (8) exhibited identical voltammograms with single reversible one electron waves at E1/2 0.98 and 0.92 V, respectively under identical conditions. The voltammograms of Ru(II)-L2 complexes (3) and (4) also became irreversible in presence of nearly four molar equivalent of sodium acetate. Hence, the irreversible redox behavior of complexes (1) and (2) has been interpreted in terms of rapid linkage isomerization, i.e. shift in κ2-S,S′ to κ2-O,O′ coordination, following the Ru(II)/Ru(III) electrode process. The electronic spectra of Ru(III)-L1 complexes (5) and (6) resemble closely with that of (9) and (10) instead of Ru(III)-L2 complexes (7) and (8), further supports proposed linkage isomerization. The cationic complexes were obtained as [PF6] salts and all compounds were characterized using analytical and spectral (IR, 1H NMR, UV-vis and mass) data.  相似文献   

14.
Asymmetric transfer hydrogenation of ketones with chiral molecular catalysts is realized to be one of the most magnificent tools to access chiral alcohols in organic synthesis. A new chiral phosphinite compound N,N′-bis[(1S)-1-benzyl-2-O-(diphenylphosphinite)ethyl]ethanediamide (1), has been synthesized by the reaction of chlorodiphenylphosphine with N,N′-bis[(1S)-1-benzyl-2-hydroxyethyl]ethanediamide under argon atmosphere. The oxidation of 1 with aqueous hydrogen peroxide, elemental sulfur or grey selenium in toluene gave the corresponding oxide 1a, sulfide 1b and selenide 1c, respectively. Pd, Pt and Ru complexes were obtained by the reaction of 1 with [MCl2(cod)] (M: Pd 1d, Pt 1e) and [Ru(p-cymene)Cl2]21f, respectively. All these new complexes were characterized by using NMR, FT-IR spectroscopies and microanalysis. Additionally, as a demonstration of their catalytic reactivity, the ruthenium complex 1f was tested as catalyst in the asymmetric transfer hydrogenation reactions of acetophenone derivatives with iPrOH was also investigated.  相似文献   

15.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

16.
A series of mono- and binuclear ruthenium(II) tris-bipyridine complexes tethered to oligothienylenevinylenes have been synthesized and characterized by 1H NMR, 13C NMR and TOF-MS spectrometry. Photophysics, electrochemistry and electrogenerated chemiluminescence (ECL) properties of these complexes are investigated. The electronic absorption spectra of the mononuclear ruthenium complexes show a significant red shift both at MLCT (metal-to-ligand charge transfer) and π-π transitions of oligothienylenevinylenes with increase in the number of thiophenyl-2-yl-vinyl unit. For the binuclear complexes these two absorption bands are overlapped. All the metal complexes have very weak emission compared to that of the reference complex Ru(bpy)2+3. The first reduction potentials of all mononuclear ruthenium complexes are less negative than that of Ru(bpy)2+3, due to the moderate electron-withdrawing effect of oligothienylenevinylenes. For binuclear ruthenium complexes, only one Ru(II/III) oxidation peak (E1/2 = 0.96 V vs. Ag/Ag+) was observed, suggesting a weak interaction between two metal centers. Three successive reduction processes of bipyridine ligands are similar among all ruthenium complexes except for RuTRu, which has a very sharp peak owing to the accumulation of neutral product on the electrode surface. All these ruthenium complexes exhibited different ECL property in CH3CN solution without any additional reductant or oxidant. For three mononuclear ruthenium complexes, the ECL intensity strengthens with increase in the number of thiophene-2-yl-vinyl unit. However, the ECL efficiency dramatically decreased in the binuclear ruthenium complexes. The ECL efficiencies of all the reported complexes do not exceed that of Ru(bpy)2+3, where the ECL efficiency decreases in the order of RuTRu > Ru3T > Ru2T > RuT > Ru2TRu (RuT,bis-2,2′-bipyridyl-(4-methyl-4′-(2-thienylethenyl)-2,2′-bipyridine) ruthenium dihexafluorophosphate; Ru2T, bis-2,2′-bipyridyl-(4-methyl-4′-{(E)-2-[5-((E)-2-thienylethenyl)-thienylethenyl]}-2,2′-bipyridine) ruthenium dihexafluorophosphate; Ru3T, bis-2,2′-bipyridyl-(4-methyl-4′-{(E)-2-{(E)-2-[5-((E)-2-thienylethenyl)-thienylethenyl]}}-2,2′-bipyridine) ruthenium dihexafluorophosphate; RuTRu, bis-2,2′-bipyridyl-ruthenium-bis-[2-((E)-4′-methyl-2, 2′-bipyridinyl-4)-ethenyl]-thienyl-bis-2,2′-bipyridyl-ruthenium tetrahexafluorophosphate; Ru2TRu, bis-2,2′-bipyridyl-ruthenium-(E)-1,2-bis-{2-[2-((E)-4′-methyl-2,2′-bipyridinyl-4)-ethenyl]-thienyl}-ethenyl-bis-2,2′-bipyridyl-ruthenium tetrahexafluorophosphate).  相似文献   

17.
Two novel redox-active 1,3-dithiole (DT) ring-fused 4,5-diazafluorene ligands with crown ether moieties (L1 and L2) were synthesized and characterized. The crystal structure of L1 was studied. The electrochemical and spectroscopic properties of these new ligands, as well as the corresponding bis(bipyridine)ruthenium(II) complexes [4: Ru L1(bpy)2 and 5: Ru L2(bpy)2], were also been investigated.  相似文献   

18.
Tetra-ether substituted imidazolium salts, LHX (where LH = N,N′-bis(2,2-diethoxyethyl)imidazolium cation and X = Br, BF4, PF6, BPh4, NO3 and NTf2 anions) were derived from imidazole. Attempts to produce aldehyde functionalized imidazolium salt through acid hydrolysis of LHBr resulted an unexpected tetra-hydroxy compound LAHBr and the dialdehyde compound LBHBr. Reaction of LHBr with Ag2O afforded [L2Ag][AgBr2] (1). Mononuclear Pd-complex trans-[L2PdCl2] (2) and dinuclear Pd-complex [(LPdCl2)2] (3) were obtained by 1:1 and 1:2 reaction of in situ generated Ag-carbene with Pd(CH3CN)2Cl2. cis-[LPdPPh3Cl2] (4) was synthesized from reaction of PPh3 with dinuclear complex 3. Hydrolysis of 3 under acidic conditions also generates a hydroxy derivative 3A and the aldehyde derivative 3B. Direct heating of LHBr with Ni(OAc)2 · 4H2O at 120 °C under vacuum generated trans-[L2NiBr2] (5). These complexes were characterized by NMR, mass, elemental analysis, and X-ray single crystal diffraction analysis. Pd--Pd interaction was observed in 3. All the Pd complexes exhibited excellent catalytic activity in Heck reaction.  相似文献   

19.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

20.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号