首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tridentate Schiff base 1-(N-salicylideneimino)-2-(N,N-diethyl-aminoethane (HL), derived from the condensation of salicylaldehyde with N,N-diethylethylenediamine, reacted with nickel(II) nitrate and azide to give a mononuclear complex of formula [Ni(L)(N3)], where HL?=?Et2N(CH2)2NCHC6H4(OH). The complex was characterized by spectroscopic and X-ray crystallographic methods. Coordination around nickel(II) is square planar. The molecular and supramolecular structure of the complex is discussed.  相似文献   

2.
Two new mononuclear nickel(II) complexes, [Ni(L)(N3)] (1) and [Ni(L)2(NCS)2] (2), where HL = 2-{[phenyl(pyridin-2-yl)methylidene]amino}benzenethiol, a tridentate Schiff base derived from 2-aminothiophenol and 2-benzoylpyridine, have been prepared and characterized. The syntheses of 1 and 2 have been achieved by the reaction of equimolar amounts of nickel perchlorate and HL in the presence of azide and thiocyanate, respectively. The complexes have been characterized by microanalytical, spectroscopic, single-crystal X-ray diffraction, and other physicochemical studies. Structural studies reveal that 1 and 2 adopt two different geometries, distorted square planar in 1 and octahedral in 2. The two mononuclear complex units are held together by ππ or C–H…π weak intermolecular interactions to develop supramolecular networks in their solid states. The antibacterial activity of 1, 2 and their constituent Schiff base has been tested against some gram(+) and gram(?) bacteria.  相似文献   

3.
Three new mononuclear complexes of copper(II), viz. [Cu(L)(N3)Cl] (1), [Cu(L′)(H2O)]ClO4 (2) and [Cu(L″)] (3) where L = N-(3-aminopropyl)-N-methylpropane-1,3-diamine, L′ = 2-(N-{3-[(3-aminopropyl)(methyl)amino]propyl}ethanimidoyl)phenolate ion and L″ = 2,2′-{(methylimino)bis[propane-3,1-diylnitrilo(1E)eth-1-yl-1-ylidene]}diphenolate ion, have been prepared. The synthesis of complex 1 has been achieved by reacting copper chloride with the triamine (L) and sodium azide in a 1:1:1 M ratio. The other two compounds have been synthesized by the reaction of copper perchlorate with the same triamine, L, plus 2-hydroxyacetophenone in a molar ratio of 1:1:1 (for 2) and 1:1:2 (for 3), so that the respective tetradentate and pentadentate Schiff bases HL′ and H2L″ are formed in situ to bind the copper(II) ions. The complexes have been characterized by microanalytical, spectroscopic and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of all the three complexes adopt a distorted square pyramidal geometry and are held together by either intermolecular H-bonding (in 1 and 2) or C-H?π interactions (in 3) to form supramolecular networks in the solid state.  相似文献   

4.
Two nickel(II) complexes of [1 + 1] macrocyclic Schiff base ligand (L) have been prepared by cyclocondensation reactions between 1,3-diamino-2-propanol and 2-[3-(2-formylphenoxy)-2-hydroxypropoxy] benzaldehyde, using NiX2 (X = Br, and I) salts as template agents, and characterized by elemental analyses, IR, molar conductivity and electronic spectra in both solid and solution states. The single-crystal X-ray diffractions of the complexes are also reported that contain nickel(II) ion in a distorted octahedral geometry coordination of N2O3X (X = Br, I and NO3). In all complexes the ligand behaves as a pentadentate ligand. Cyclic voltammetric studies of nickel(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

5.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

6.
Sodium-assisted self-assembly of two nickel(II) Schiff base complexes under similar reaction conditions yield hetero-metallic compounds [{Ni(salpn)}2Na(ClO4)] (1) and [{Ni(salpr)}3Na][Ni(salpr)]2ClO4·2H2O (2) (where salpn?=?N,N′-bis-(salicylidene)-1,3-diaminopropane and salpr?=?N,N′-bis-(salicylidene)-1,2-diaminopropane). Both have been characterized by physico-chemical techniques and single-crystal X-ray diffraction. Crystal structure reveals that in the tri-metallic system of 1 sodium is sandwiched between two [Ni(salpn)] units while the hexametallic system of 2 consists of tetrametallic cluster ion [{Ni(salpr)}3Na]+ with encapsulated sodium by three [Ni(salpr)] units. In both complexes, sodium adopts distorted trigonal prismatic geometry leaving nickel(II) in a distorted square-planar environment. Structural characterization also reveals that 2?:?1 (for 1) and 3?:?1 (for 2) self-assemblies of metallo-ligand and sodium were achieved with slight variation in ligand backbone.  相似文献   

7.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

8.
9.
New nickel(II) and copper(II) complexes with unsymmetrical Schiff bases derived from aromatic 2-hydroxy aldehydes were synthesized and characterized by elemental analyses, melting points, 1H-NMR, magnetic susceptibility, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared (IR), and electronic spectral measurements. Comparison of IR spectra of the Schiff bases and their metal complexes indicated that the Schiff bases are tetradentate, coordinated via the two azomethine nitrogens and the two phenolic oxygens. Magnetic moments and electronic spectral data confirm square-planar geometry for the complexes. Thermal studies reveal a general decomposition pattern, whereby the complexes decomposed partially in a single step due to loss of part of the organic moiety. A single endothermic profile, corresponding to melting point, was observed from the DSC of all complexes, except those whose ligand contained the nitro group, which decomposed exothermally without melting. The Schiff bases and their complexes were screened in vitro against 10 human pathogenic bacteria. The metal(II) complexes exhibited higher antibacterial activity than their corresponding Schiff bases.  相似文献   

10.
Two new Cd(II) complexes, having one binuclear structure [Cd2(L)2(Cl)2] (1) and another azido bridged one-dimensional zig-zag polynuclear network [Cd31,1-N3)4(L)2{H2N(CH2)2N(C2H5)2} · H2O]n (2) have been synthesized from a tridentate N2O donor Schiff base ligand LH, [LH = (OCH3)(OH)C6H3CHN(CH2)2N(C2H5)2], which is the condensation product of 2-hydroxy-4-methoxybenzaldehyde and 2-diethylaminoethylamine. Both the complexes 1 and 2 have been characterized by elemental analyses, IR & 1H NMR spectroscopy, TGA and fluorescence studies. Finally their structures have been established by single crystal X-ray diffraction method. Structural study reveals that in the complex 1, two Cd(II) centers are held together by two μ2-phenolato oxygen atoms and the terminal chlorine atom occupies the apical site of the square pyramidal environment of each metal center. In case of complex 2, the trinuclear asymmetric unit contains octahedral Cd(II) centers which are further held together by doubly end-on azido bridging to form a zig-zag polynuclear structure. It also displays intraligand 1(π–π) fluorescence and can potentially serve as photoactive material.  相似文献   

11.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

12.
Three new mononuclear Schiff-base complexes, namely [Mn(L)Cl] (1), [Ni(L)] (2), and [Cu(L)] (3), where L?=?anion of [N,N′-bis(2-hydroxybenzophenylidene)]propane-1,2-diamine, have been synthesized by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base, H2L, in methanol. The complexes have been characterized by microanalytical, spectroscopic, single-crystal X-ray diffraction, and other physicochemical studies. Structural studies reveal that 1 adopts a distorted square-pyramidal geometry whereas 2 and 3 are isotypic with distorted square-planar geometries. The antibacterial activities of 13 along with their Schiff base have been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

13.
A series of complexes of the type M(Phca2en)X2, where Phca2en=N,N′-bis(β-phenyl-cinnamaldehyde)-1,2-diiminoethane, M(II)=Co, Ni or Zn and X=Cl, Br, I or NCS have been synthesized and characterized. The crystal and molecular structures of Co(Phca2en)Cl2 (2), Ni(Phca2en)Br2 (5) and Zn(Phca2en)Cl2 (6) were determined by X-ray crystallography from single-crystal data. Complexes 2 and 5 are isomorph and isostructure, in which the coordination polyhedron about the central metal ion is distorted tetrahedron with Cl---Co---Cl, 110.17(6)°; N---Co---N, 84.16(13)° and Cl---Zn---Cl, 112.02(6)°; N---Zn---N, 83.45(16)°. The complex 5 crystallizes in triclinic system with two molecules per asymmetric unit, both having nickel ion in distorted tetrahedral geometry, Br---Ni---Br, 122.645(18)° and 125.729(18)°; N---Ni---N, 84.63(9)° and 85.08(9)°. These structures consist of intermolecular hydrogen bonds of the type C---HX. The formation of the C---HM weak intramolecular hydrogen bonds due to the trapping of C---H bonds in the vicinity of the metal atoms are reported for 2, 5 and 6. A 1H NMR study of Zn complexes gives further evidence for the presence of such interactions and their significance. The spectral properties of the above complexes are also discussed.  相似文献   

14.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

15.
Five mononuclear complexes of manganese(II) of a group of the general formula, [MnL(NCS)2] where the Schiff base L = N,N′-bis[(pyridin-2-yl)ethylidene]ethane-1,2-diamine (L1), (1); N,N′-bis[(pyridin-2-yl)benzylidene]ethane-1,2-diamine (L2), (2); N,N′-bis[(pyridin-2-yl)methylidene]propane-1,2-diamine (L3), (3); N,N′-bis[(pyridin-2-yl)ethylidene]propane-1,2-diamine (L4), (4) and N,N′-bis[(pyridin-2-yl)benzylidene]propane-1,2-diamine (L5), (5) have been prepared. The syntheses have been achieved by reacting manganese chloride with the corresponding tetradentate Schiff bases in presence of thiocyanate in the molar ratio of 1:1:2. The complexes have been characterized by IR spectroscopy, elemental analysis and other physicochemical studies, including crystal structure determination of 1, 2 and 4. Structural studies reveal that the complexes 1, 2 and 4 adopt highly distorted octahedral geometry. The antibacterial activity of all the complexes and their respective Schiff bases has been tested against Gram(+) and Gram(−) bacteria.  相似文献   

16.
Herein we report the synthesis and characterization of trans-[RuIICl2(PPh3)3] with potentially tridentate Schiff bases derived from 5,6-diamino-1,3-dimethyl uracil (H2ddd) and two 2-substituted aromatic aldehydes. In the diamagnetic ruthenium(II) complexes, trans-[RuCl(PPh3)2(Htdp)] (1) {H2tdp = 5-((thiophen-3-yl)methyleneamino)-6-amino-1,3-dimethyluracil} and trans-[RuCl(PPh3)2(Hsdp)] (2) {H2sdp = 5-(2-(methylthio)benzylideneamino)-6-amino-1,3-dimethyluracil}, the Schiff base ligands (i.e. Htdp and Hsdp) act as mono-anionic tridentate chelators. Upon reacting 5-(2-hydroxybenzylideneamino)-6-amino-1,3-dimethyluracil (H3hdp) with the metal precursor, the paramagnetic complex, trans-[RuIVCl2(ddd)(PPh3)2] (3), was isolated, in which the bidentate dianionic ddd co-ligand was formed by hydrolysis. The metal complexes were fully characterized via multinuclear NMR-, IR-, and UV–Vis spectroscopy, single crystal XRD analysis and conductivity measurements. The redox properties were probed via cyclic voltammetry with all complexes exhibiting comparable electrochemical behavior with half-wave potentials (E½) at 0.70 V (for 1), 0.725 V (for 2), and 0.68 V (for 3) versus Ag|AgCl, respectively. The presence of the paramagnetic metal center for 3 was confirmed by ESR spectroscopy.  相似文献   

17.
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials.  相似文献   

18.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

19.
Two picolinate-containing nickel(II) complexes [Ni(bbma)(pic)(H2O)]ClO4 · CH3OH (1) and [Ni(ntb)(pic)]Cl · CH3OH · 3H2O (2) were synthesized and characterized by infrared, elemental analysis, UV-Vis, and X-ray diffraction analyses, where bbma is bis(benzimidazol-2-yl-methyl)amine, ntb is tris(2-benzimidazolylmethyl)amine, pic is the anion of picolinic acid. X-ray analysis shows that both complexes are mononuclear with picolinate coordinated to Ni(II) in a μ2-N,O chelating mode. Both complexes adopt distorted octahedral geometry. Intermolecular N–H ··· O and O–H ··· O hydrogen bonds and π–π interactions in 1 and 2 are important in stabilization of the crystal structures.  相似文献   

20.
Two octahedral complexes [Ni(HL1)2](ClO4)2 (1) and [Ni(HL2)2](ClO4)2 (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-butan-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography; complexes 1 and 2 are seen to be the mer isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号