首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

2.
3.
Bromination reactions of Cu(II) 5,10,15,20-tetraphenylporphyrinate with N-bromosuccinimide in chloroform and chloroform–dimethylformamide mixture and complexation of 2-bromo-5,10,15,20-tetraphenylporphyrin and 2,3,12,13-tetrabromo-5,10,15,20-tetraphenylporphyrin with copper(II) acetate in dimethylformamide have been studied. Mono-, tetra-, and octabromo-substituted Cu(II) porphyrinates have been synthesized. Obtained compounds have been identified by electronic absorption spectroscopy, IR spectroscopy, mass spectrometry, and elemental analysis.  相似文献   

4.
IntroductionTheabilityofdithiocarbamate(dtc)bindingtometalshasbeenknownformanyyears .Itformschelateswithvirtu allyalltransitionmetals.1Thebidentateanionisalsowellknownasabridgebetweentwotransitionmetalcenters.2 Wa ter solubledialkyldithiocarbamatecomplexes…  相似文献   

5.
Introduction The complexes of amino acid Schiff base have re-ceived considerable attention because of the interests in the biogical field.1-4 Taurine is a special amino acid in human beings. Recently, the complexes of taurine con-densation salicylaldelyde Schiff base have been re-ported,3-7 but the complexes of taurine condensation derived salicylaldelyde Schiff base have not been re-ported yet. In order to examine its anticancer and antibiosis ac-tivity of the complexes of taurine condensa…  相似文献   

6.
Using spectrophotometry we found that ligand exchange in the systems of H2L-[MX2]-DMF, where M denotes Co2+, Cu2+, and Zn2+; X means Acac?, Val?, dpm?; Hdpm? is hexamethyldipyrrolylmethene, H2L is bis(2,4,7,8,9-pentamethyldipyrrolylmethene-3-yl)methane, proceeds through successive stages of formation of hetero- and homoleptic binuclear complexes. Conventional sensitivity of the spectrophotometric determination of Co2+, Cu2+, and Zn2+ reaches 10?9 M.  相似文献   

7.
The methanolysis of the Cu(II) complex of N-acetyl-N,N-bis(2-picolyl)amine (2) was investigated by a kinetic study as a function of pH in methanol at 25 °C and computationally by DFT calculations. The active species is the basic form of the complex (3(-)), or (1:Cu(II))((-)OCH(3))(HOCH(3))), and the rate constant for its solvolysis is k(max) = 1.5 × 10(-4) s(-1). The mechanism involves Cu(II) binding to the amide N lone pair, decoupling it from >N-C═O resonance, concomitant with Cu(II):((-)OCH(3)) delivery to the adjacent >N-C═O unit, followed by Cu(II)-assisted departure of the N,N-bis(2-picolyl)amide from a tetrahedral intermediate.  相似文献   

8.
Synthesis of volatile complexes based on -ketoimine pivalyltrifluoroacetone, C(CH3)3C(NH)CH2COCF3, is described. The general formula of the complexes is M(L)2, where M = Cu, Ni, Pd. Complexes of this kind with Ni and Pd were obtained for the first time. The Cu and Pd complexes were found to be isostructural. A comprehensive crystal-chemical study showed that all structures are molecular and built of trans-complexes. The central atom has a square plane environment. The average M-O and M-N distances are nearly equal in all compounds: 1.84 , 1.92 , and 1.98 for Ni, Cu, and Pd complexes, respectively; the mean values of the O-M-N chelate angles are 93.4°, 91.9°, and 92.7°, respectively.Original Russian Text Copyright © 2004 by I. A. Baidina, G. I. Zharkova, N. V. Pervukhina, S. A. Gromilov, and I. K. IgumenovTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 4, pp. 713–722, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

9.
The reactions of eaq, CH2OH·, (CH3)2COH·, CO, OH· and N3· radicals with peroxo terpyridine complexes of Cu(II), Zn(II), and Cu(II) Zn(II) in aqueous solution were investigated by pulse radiolysis. The primary products from the reduction and oxidation of the macrocyclic complexes were assigned a radical nature by comparing their optical spectra with those of Cu(I), Zn(I), and Cu(III) species. Such metal–ligand radical products undergo disproportionation that does not lead to the formation of Cu(0) or colloidal copper. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 92–98, 2000  相似文献   

10.
Two substituted N-acylthioureas and the respective Ni(II) and Cu(II) complexes were synthesized, namely: N,N-di-n-butyl-N′-thenoylthiourea (Hnbtu); N,N-di-iso-butyl-N′-thenoylthiourea (Hibtu); bis[N,N-di-n-butyl-N′-thenoylthioureato]nickel(II), [Ni(nbtu)2]; bis[N,N-di-n-butyl-N′-thenoylthioureato]copper(II), [Cu(nbtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]nickel(II), [Ni(ibtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]copper(II), [Cu(ibtu)2]. The standard (p° = 0.1 MPa) molar enthalpies of formation and sublimation of the two N-acylthioureas were measured, at T = 298.15 K, by rotating-bomb combustion calorimetry and Calvet microcalorimetry, respectively. The standard (p° = 0.1 MPa) molar enthalpies of formation of the Ni(II) and Cu(II) complexes were determined, at T = 298.15 K, by high precision solution–reaction calorimetry. From the results obtained, the enthalpies of hypothetical metal–ligand and metal–metal exchange reactions, in the gaseous phase, were derived, thus allowing a discussion of the gaseous phase energetic difference between the complexation of Ni(II) and Cu(II) to 1,3-ligand systems with (S,O) ligator atoms.  相似文献   

11.
近年来的研究表明,某些过渡金属Schiff碱配合物具有抗菌、抗癌、抗病毒活性。不对称Schiff碱配合物因其特殊的结构和性质正日益受到人们的关注[3]。但由于不对称双Schiff碱及其配合物的合成及单晶培养比较困难,国内有关其合成与结构的报道较少。我们曾首次合成了不对称双Schiff碱配合物HCuL (H3L为N-3-羧基水杨醛-N/-水杨醛-缩乙二胺)及其多个异三核配合物[1,2],本文报道的是该系列同双核配合物(HCuL)2(1) 及Cu(II)-Mg(II)-Cu(II)异三核配合物(2),并通过X-射线衍射的方法解析了两个配合物的晶体结构。配合物1的晶体属单斜晶系,Cc空间群,晶胞参数为a=2.5326(5)nm, b=0.88861(18)nm, c=1.3738(3)nm, β =96.95(3)°, Z=4, R1=0.0520,wR2=0.0968, 此配合物是两个HCuL分子通过酚氧桥联而形成的双聚分子。配合物2的晶体属单斜晶系, Pc空间群,晶胞参数为a= 1.1816(2)nm, b=1.5599(3)nm, c=1.9642(4)nm, β =98.22°, Z=2, R1=0.0701,wR2=0.1498,其晶格的每个不对称单元包含两个异三核中性分子[CuL(H2O)]Mg[CuL(CH3OH)]}和{[CuL]Mg[CuL(H2O)]}  相似文献   

12.
Two heterometallic coordination complexes, {[Cu(aeop)Zn(H2O)3]2?·?3H2O} n (1) and [Cu(aeop)Ni(H2O)4]?·?4H2O (2) (H4aeop?=?N-(2-aminoterephthalic acid)-N′-(1,3-propanediamine)oxamidate), have been synthesized and characterized by elemental analyses, IR, UV spectroscopy, thermogravimetric analysis, and X-ray crystal diffraction. Complex 1 features a 1-D chain constructed from neutral tetranuclear units. Complex 2 is a neutral binuclear complex. Through intermolecular hydrogen-bonding interactions, 2 gives a 3-D network structure. The variable temperature magnetic susceptibility measurements (2–300?K) of 2 show a pronounced antiferromagnetic interaction between the copper(II) and nickel(II), and the exchange integral J is equal to ?42.7?cm?1.  相似文献   

13.
The structure of the hexanuclear copper(II) β-diketonate complex with gfa (hexafluoroacetylacetone) and dpm (dipivalylmethanate) ligands was studied by low-temperature (T = 100 K) X-ray diffraction. Crystal data for Cu6(gfa)4(dpm)4(OH)4 [C64H84Cu6F24O20]: a = 28.2364(7) Å, b = 12.8072(3) Å, c = 24.7199(7) Å, β= 115.900(1)°, V = 8041.5(4) Å3, space group C2/m, Z = 4, d calc 1.661 g/cm3. The coordination polyhedra of the copper atoms — squares and octahedra — are formed by the oxygen atoms of the gfa and dpm ligands and groups. In all cases, the Cu-O distances vary from 1.89 Å to 2.13 Å. The complexes follow the sites of the rhombohedral sublattice with the parameters a c ≈ 14.4 Å and a c ≈ 61.5°.  相似文献   

14.
15.
This paper describes the synthesis of (pyridyl)benzoazole Zn(II) and Cu(II) complexes and their applications as catalysts in ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). Reactions of 2-(3-pyridyl)-1H-benzimidazole (L1), 2-(2-pyridyl)-1H-benzothiazole (L2) and 2-(2-pyridyl)-1H-benzimidazole (L3) with Zn(II) and Cu(II) acetates produced the corresponding complexes; [Zn2(L1)2(OAc)4)] (1), [Cu2(L1)2(OAc)4] (2), [Zn(L2)(OAc)2)] (3), [Zn(L3)(OAc)2)] (4) and [Cu(L3), (OAc)2)] (5). Molecular structures of complexes 2 and 5a revealed that while L1 adopts a monodentate binding mode, through the pyridyl nitrogen atom, L3 exhibits a bidentate coordination mode. All the complexes formed active catalysts in the ROP of ε-CL to afford moderate molecular weight polymers. The kinetics of the ROP reactions of ε-CL were pseudo-first-order with respect to monomer and catalysts.  相似文献   

16.
Copper(II) complex, 1, of the bidentate ligand, L [L = bis(2-ethyl-4-methyl-imidazol-5yl)methane] has been synthesized and structurally characterized. Addition of nitric oxide gas to a degassed acetonitrile solution of 1 yielded the corresponding copper(ii)-nitrosyl complex, 2. In acetonitrile, complex 2 on reaction with water afforded the corresponding copper(I)-nitrite complex, 3. Single crystal structure of complex 3 reveals the bidentate nitrite (η(2)-O,O) bonding. This is the first example of a structurally characterized Cu(I)-(η(2)-O,O)nitrite complex with N-donor ligand. The sequence of the formation of these complexes is just the reverse of the key steps of the postulated nitrite reduction cycle by CuNiRs.  相似文献   

17.
The interaction of DNA with Copper(II)-Glutathione (CuGSH) has been investigated by various biophysical methods. The interaction ratio of DNA and Copper(II)-Glutathione in solution phase has been determined spectrophotometrically and found to be 0.25. EPR spectroscopy and UV–Vis findings suggest that Cu(II)-Glutathione neither bound to the DNA bases covalently nor intercalated, this has further been substantiated by the determination of intrinsic binding constant (2.1 × 102). Viscometric measurements also support this type of binding to DNA by Cu(II)-Glutathione. EPR studies and visible d–d spectra of CuGSH after interaction with DNA, suggested that Copper remained in the Copper(II) state. DNA conformations after interaction with Cu(II)-Glutathione has been determined spectroscopically. Circular dichroism studies revealed that the B conformation of DNA is changed to A after interaction with Cu(II)-Glutathione. This has further been substantiated by thin film IR (Infrared) studies.  相似文献   

18.
CuLCl, CuL1Cl, PdLCl2, and PdL1Cl2 complexes [L and L1 being (+)-camphor and (–)-carvone thiosemicarbazones, respectively] have been synthesized. The structure of binuclear [Pd2L22Cl4] complex has been determined by means of X-ray diffraction. The L2 ligand (dehydrogenated (–)-carvone thiosemicarbazone) is coordinated via the bridging S atom to two Pd atoms. The complexes of Cu(I) and Pd(II) presumably have polynuclear and binuclear structure, respectively. These facts are in good agreement with IR and NMR spectroscopy as well as mass spectrometry data which indicate the coordination of L and L1 ligands via the S atom. The influence of L1 and PdL1Cl2 on viability of the Hep2 cell line has been studied. The PdL1Cl2 complex is more cytotoxic than L1 ligand.  相似文献   

19.
Complexes of Co(II), Ni(II), Cu(II), and Zn(II) with N,N′-(aldose)2–thiocarbohydrazide (LH2) were synthesized, isolated as solid products and characterized by analytical means as well as by spectral techniques, FTIR, 1H NMR, EPR, UV spectroscopy, and CD. All the metal ions formed M[LH]X complexes. Molar conductance values in DMF indicate non-electrolytic complexes. In DMSO with tetramethylammonium chloride supporting electrolyte, the copper complex displays irreversible cyclic voltammetric responses with E p near ?0.621 and 0.461 V versus Ag/AgCl at scan rate of 0.1 V s?1. Probable structures for the complexes are proposed.  相似文献   

20.
A series of metal ion complexes was prepared in solid state from Cu(II), Hg(II) and UO2(II) ions with 3-oxo-3-(2-(2-oxoindolin-3-ylidene)hydrazineyl)-N-phenylpropanamide (H3L) ligand through solvent free synthesis methodology. The chemical formulae of the new compounds were estimated according to variable spectral and analytical investigations. The ligand exhibited a neutral or mononegative tetradentate mode of coordination towards the central ions inside the octahedral arrangement that proposed for the three complexes. The DFT/B3LYP method was applied under different basis sets (6-31G*or SDD) to optimize the structures of new compounds except the UO2(II) complex. The computational data were investigated to verify the binding mode that suggested spectrally. Moreover, studies in solution regarding Cu(II) ion via cyclic voltammetry were performed in absence or presence of H3L, to realize the significant effect of complex formation on the electrochemical manners of copper. The shifts in the potential peaks accompanied by the changes in the values of parameters correspond to kinetic and thermodynamic. Also, the solvation and kinetic characteristics for the cathodic and anodic potential of Cu(II) ion in absence or presence of H3L at different scan rates, were estimated. Finally, the ligand and copper ion exhibited high affinity towards complexation in solution. Furthermore, the activity of the new compounds towards inhibiting microbes was studied against Staphylococcus aureus (G+) and Escherichia coli (G-) bacteria as well as Candida albicans (fungus) by determining the inhibition zone diameter. Also, both the antioxidant and cytotoxic activity of the isolated compounds were evaluated. Commonly, a remarkable antimicrobial and anticancer activity was appeared with UO2(II) complex and the ligand. While, the antioxidant activity of all compounds appeared lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号