首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

2.
The reactions of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine with CuCl2 · 2H2O, Cu(NO3)2 · 3H2O and CuSO4 · 5H2O have been examined, and four [CuCl2(dppt)] (1), [CuCl2(dppt)2] · 2MeOH (2), [Cu(dppt)2(H2O)2](NO3)2 (3) and [Cu(SO4)(dppt)(H2O)]n · nH2O (4) complexes have been obtained. All the complexes have been structurally and spectroscopically characterized, and compound 4 has been additionally studied by magnetic measurements. The electronic structure of 1 has been calculated with the density functional theory (DFT) method, and the time-dependent DFT calculations have been employed to calculate the electronic spectrum of 1.  相似文献   

3.
Four new luminescent complexes, namely, [Eu(aba)2(NO3)(C2H5OH)2] (1), [Eu(aba)3(H2O)2]·0.5 (4, 4′-bpy)·2H2O (2), [Eu2(aba)4(2, 2′-bpy)2(NO3)2]·4H2O (3) and [Tb2(aba)4(phen)2(NO3)2]·2C2H5OH (4) were obtained by treating Ln(NO3)3·6H2O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4′-bpy=4, 4′-bipyridine, 2, 2′-bpy=2, 2′-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains (1-2) and dimeric structures (3-4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed.  相似文献   

4.
Reactions of metal acetates with 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-abpt) and co-ligands gave rise to four new complexes, namely [Zn2(3-abpt)(beta)(DMF) (H2O)2]n·nH2O (1), [Zn(3-abpt)(ip)]n·3nH2O (2), [Zn(3-abpt)(ip)(H2O)2]n·2nH2O (3), and [Cu2(3-abpt)2(C6H5COO)4(H2O)2]n·2nH2O (4) (ip = isophthalate, beta = 1,2,4,5-benzenetetracarboxylate). Compound 1 is a 3D coordination polymer with uncommon 3,4-connected (62.8)2(62.82.102) network. Compounds 24 are all 1D coordination polymers, which exhibit diversity structures. Compound 2 is a tubular-like chain, 3 is a ring-like network, and 4 is a zigzag chain. Their thermal stabilities and the photoluminescence of 1 have also been investigated.  相似文献   

5.
Four new coordination polymers {[Ni(HL)(H2O)]·H2O}n (1), {[Co(HL)(H2O)]·H2O}n (2), {[Co(HL)]·4H2O}n (3) and {[Zn(HL)]·2H2O·0.5C2H5OH}n (4) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid] have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses. Complexes 1 and 2 display (3, 3)-connected 2D network with (4, 82) topology. While 3 and 4 exhibit a binodal (3, 6)-connected 2D network with a Schläfli symbol (43)2(46, 66, 83). The complexes 14 show remarkable thermal stability and 4 exhibits blue fluorescence with maximum emission at 413 nm upon excitation at 362 nm in the solid state at room temperature. In addition, the magnetic measurements of 3 indicate that there are antiferromagnetic interactions between the neighboring Co(II) centers.  相似文献   

6.
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L1), C5H7N2CH2CONiBu2 (L2), C3H3N2CH2CONBu2 (L3), C3H3N2CH2CONiBu2 (L4) and C5H7N2CH2CON(C8H17)2 (L5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L1 to L4 with [UO2(NO3)2 · 6H2O], [La(NO3)3 · 6H2O] and [Ce(NO3)3 · 6H2O] has been evaluated. Structures for the compounds [UO2(NO3)2 C5H7N2CH2CONBu2] (6) [UO2(NO3)2 C5H7N2CH2CONiBu2] (7) and [Ce(NO3)3{C3H3N2CH2CONiBu2}2] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration.  相似文献   

7.
5-Ferrocenylpyrimidine (FcPM) reacts with dinuclear copper(II) carboxylates ([Cu2(RCOO)4]; R = C6H5, C5H11, CH3) to produce one-dimensional coordination polymers [Cu2(C6H5COO)4(FcPM)]n (1), [Cu2(C5H11COO)4(FcPM)]n · nCH3CN (2), and a discrete tetranuclear complex [Cu2(CH3COO)4(FcPM)2] (3). Compounds 1 and 2 show similar zigzag chain structures, comprising alternate linking of FcPM and dinuclear copper(II) units, whereas the structure of 3 corresponds to the local structural motifs of 1 and 2. Reaction of FcPM with zinc salts (ZnX2; X = NO3, SCN) affords zinc-centered ferrocenyl cluster complexes, [Zn(NO3)2(FcPM)3] (4) and [Zn(SCN)2(FcPM)2] · 0.5H2O (5), with varying M:L ratios. FcPM acts as a bidentate ligand in 1 and 2, and as a monodentate ligand in the others.  相似文献   

8.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

9.
Treatments of p-ferrocenylbenzoate [p-NaOOCH4C6Fc, Fc=(η5-C5H5)Fe(η5-C5H4)] with Ln(NO3)3·nH2O afford seven p-ferrocenylbenzoate lanthanide complexes {[Ln(OOCH4C6Fc)2(μ2-OOCH4C6Fc)2(H2O)2](H3O)}n [Ln=Ce (1), Pr (2), Sm (3), Eu (4), Gd (5), Tb (6) and Dy (7)]. X-ray crystallographic analysis reveals that the isomorphous complexes {[Ce(OOCH4C6Fc)2(μ2-OOCH4C6Fc)2(H2O)2](H3O)}n (1) and {[Pr(OOCH4C6Fc)2(μ2-OOCH4C6Fc)2(H2O)2](H3O)}n (2) form a unique 1D double-bridged infinite chain structure bridged by μ2-OOCH4C6Fc groups. Each Ln(III) ion adopts a dodecahedron coordination environment with eight coordinated oxygen atoms from two terminal monodentate coordinated FcC6H4COO units, two terminal monodentate coordinated H2O molecules and four μ2-OOCH4C6Fc units. The luminescent spectra reveal that only 4 and 6 exhibit characteristic emissions of lanthanide ions, Eu(III) and Tb(III) ions, respectively. The variable-temperature magnetic properties of 5 and 7 suggest that a ferromagnetic coupling between spin carriers may exist in 5.  相似文献   

10.
Treatment of RnGeCl4−n with {S(C6H3SH)2O} (1) afforded the stable phenoxathiin-4,6-dithiolate compounds [{S(C6H3S)2O}GeR2] [n = 2; R = Et (2), Ph (3)] and [{S(C6H3S)2O}GeRCl] [n = 1; R = Et (4), Ph (5)]. Treatment of GeCl4 with 1 in benzene afforded the dichloro compound [{S(C6H3S)2O}GeCl2] (8) at 7 °C. Bromo compounds [{S(C6H3S)2O}GeRBr] [R = Et (6), Ph (7)] and [{S(C6H3S)2O}GeBr2] (9) were synthesized by halogen exchange from the appropriate chloro derivative using KBr/HBr. X-ray structure determinations of diorganyl dithiolate compounds 2 and 3 revealed that germanium atom is contained in a boat–chair-shaped eight-membered central ring and displays a tetrahedral geometry. In contrast, compounds 46 display a boat–boat-shaped central ring with a significant intramolecular transannular O···Ge interaction. The geometry of the pentacoordinate Ge atom in these last complexes may be described as distorted trigonal bipyramidal with a 62–65% distortion displacement.  相似文献   

11.
Three hydroxamic acid ligands (HL1 = acetohydroxamic acid; HL2 = benzohydroxamic acid; HL3 = N-phenylbenzohydroxamic acid), have been used to synthesize series of mono- or dialkyltin(IV) complexes, which include (i) the carboxyl acid hybrid five-coordinated dialkyltin complexes (C4H9)2SnL1L4 (1), [(CH3)2SnL2L5]·0.5C6H6 (2), (HL4 = acetic acid; HL5 = benzoic acid); (ii) the six-coordinated mono-n-butyltin complexes (C4H9)SnL1·Cl2·H2O (3), (C4H9)SnL2·Cl2·H2O (4), [(C4H9)SnL3·Cl2·H2O]·H2O (5), [(C4H9Sn)2(L3)2·Cl2·(OCH3)2] (6); and (iii) the alkali metal-mingled seven-coordinated mono-n-butyltin complexes [(C4H9Sn)3L2Na]+·Cl·(CH3CH2)2O (7), [(C4H9Sn)3L2K]+·Cl·CH2Cl2 (8). All complexes were characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR and X-ray single crystal diffraction. In these complexes, hydroxamic acids present bidentate coordination modes with the carbonyl O atom and the hydroxyl O atom binding to tin center. In complexes 1-6, each tin atom is coordinated by one hydroxamic acid ligand. However, in complexes 7 and 8, tin atom is surrounded by three hydroxamic acid ligands, and all hydroxyl O atoms of the ligands also bind to the alkali metal center (Na or K). This kind of organotin(IV) framework containing one alkali metal is found for the first time. Furthermore, the supramolecular structures of 1, 3, 4 and 6 have been found to consist of 1D linear molecular chains formed by intermolecular N-H···X or C-H···X (X = O, N or Cl) hydrogen bonds. For complex 2, an interesting macrocyclic tetramer has been built by the intermolecular N-H···O hydrogen bonds. Fascinatingly, two unique symmetric dimeric structures are recognized in complexes 7 and 8, which is individually bridged by intermolecular N-H···Cl and N-H···O hydrogen bonds. In addition, for 8, the dimeric cycles have been further connected into a 1D supramolecular chain.  相似文献   

12.
Six novel Ni(II)-fluconazole complexes formulated as (C13H11N6OF2)2Ni2(NO3)2 (1), (C13H12N6OF2)2Ni(NO3)2·H2O (2), (C13H12N6OF2)Ni(SO4)(DMF)2(H2O) (3), (C13H12N6OF2)2Ni(H2O)2(SO4)·4H2O (4), (C13H12N6OF2)2NiCl2·2(CH3OH) (5), (C13H12N6OF2)4Ni2 (MoO4)2·6H2O (6) have been hydrothermally or solvothermally synthesized under similar conditions except different anions and solvents. They are structurally characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Complex 1 is a molecular binuclear nickel cluster. Complex 2 exhibits a one-dimensional (1D) chain linked by double-stranded fluconazole-bridge. Complex 3 shows a novel 1D chain linked by double-stranded fluconazole-bridge and double-stranded SO42−-bridge. Complex 4 shows a three-dimensional (3D) architecture and SO42− anions occupy the cavity. Complex 5 exhibits a two-dimensional (2D) structure constructed by alternating left- and right-handed helices. Complex 6 exhibits a 3D architecture, in which the 2D layers are pillared by {MoO4} tetrahedra. Complex 2 can be irreversibly converted to complex 1 in the presence of DMF (N,N′-dimethyllformamide). Complexes 1, 3 and 6 show antiferromagnetic interactions between the nickel (II) ions The photoluminescence properties of the six complexes indicated that the introduction of different anions can enhance or weaken the intra-ligand transitions of fluconazole.  相似文献   

13.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

14.
NO2 containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO2) and 2,5-dinitroterephthalate (bdc-(NO2)2), afford porous coordination polymers, {[Zn2(bdc-NO2)2(dabco)]·solvents}n (2solvents) and {[Zn2(bdc-(NO2)2)2(dabco)]·solvents}n (3solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn2 units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2solvents and 3solvents, a rectangle pore surrounded by eight Zn2 corners contains two and four NO2 moieties, respectively. Thermal gravimetry (TG) and X-ray powder diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me2CO. Adsorption measurements reveal that dried 2 and 3 adsorb H2O molecules to be {[Zn2(bdc-NO2)2(dabco)]·4H2O}n (2⊃4H2O) and {[Zn2(bdc-(NO2)2)2(dabco)]·6H2O}n (3⊃6H2O), showing the pore hydrophilicity enhancement caused by NO2 group introduction.  相似文献   

15.
Six new copper(II) complexes, CuLCl·H2O (1), CuL(NO3)·2H2O (2), [Cu(L)2] (3), CuL(SCN)·2H2O (4), CuL(ClO4)·2H2O (5) and (CuL)2(SO4)·4H2O (6), where HL = 1-phenyl-2,3-dimethyl-4-(N-2-hydroxy-4-methoxy-benzaldehyde)-3-pyrazolin-5-one, have been synthesized. The characterization of the newly formed compounds was done by 1H NMR, UV-Vis, IR, ESR spectroscopy, elemental analysis and molar electric conductivity. The crystal structure of 1-phenyl-2,3-dimethyl-4-(N-2-hydroxy-4-methoxy-benzaldehyde)-3-pyrazolin-5-one has been determined by X-ray diffraction studies, as well as the crystal structure of one of its copper(II) complexes, [Cu(L)2] (3). The copper atom is coordinated to two nitrogen and two oxygen atoms of the Schiff base ligand. The in vitro antibacterial activity against Klebsiella pneumoniae ATCC 100131, Staphylococcus aureus var. Oxford 6538, Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 10536 strains was studied and compared with that of free ligand. The anti-microbial activity was dependent on the microbial species tested and the metal salt anion used.  相似文献   

16.
The hydrothermal reactions of isonicotinic acid (HIso) and metal salts yielded two novel 3-D coordination polymers {[Cu4(Iso)4(μ3-O)2(C2H5OH)2]·2C2H5OH·C2H6N4}n (1), {[Cd(Iso)2(H2O)]·OHCCHO}n (2), in which 1 was constructed from 32-membered rings and 3-D interpenetrating network of 2 from 42-membered rings. The fluorescent characterizations show the emissions at 565 nm for 1 and 440 nm for 2 possibly assigned to LMCT and IL, respectively.  相似文献   

17.
The structures and infrared spectra of six novel thorium compounds are reported. Th(NO3)2(OH)2(H2O)2 (1) crystallizes in space group C2/c, a=14.050(1), b=8.992(7), c=5.954(5) Å, β=101.014(2)°. K2Th(NO3)6 (2), P-3, a=13.606(1), c=6.641(6) Å. (C12H28N)2Th(NO3)6 (3), P21/c, a=14.643(4), b=15.772(5), c=22.316(5) Å, β=131.01(1)°. KTh(NO3)5(H2O)2 (4), P21/c, a=10.070(8), b=12.731(9), c=13.231(8) Å, β=128.647(4)°. Th(CrO4)2(H2O)2 (5), P21/n, a=12.731(1), b=9.469(8), c=12.972(1) Å, β=91.793(2)°. K2Th3(CrO4)7(H2O)10 (6), Ama2, a=19.302(8), b=15.580(6), c=11.318(6) Å. The coordination polyhedra about Th in these structures are diverse. Th is coordinated by 9 O atoms in 5 and 6, seven of which are from monodentate (CrO4) tetrahedra and two are (H2O). The Th in compound 1 is coordinated by ten O atoms, four of which are O atoms of two bidentate (NO3) triangles and six of which are (OH) and (H2O). In compounds 2, 3 and 4 the Th is coordinate by 12 O atoms. In 2 and 3 there are six bidentate (NO3) triangles, and in 4 ten of the O atoms are part of five bidentate (NO3) triangles and the others are (H2O) groups. The structural units of these compounds consist of a chain of thorium and nitrate polyhedra (1), isolated thorium hexanitrate clusters (2, 3), an isolated thorium pentanitrate dihydrate cluster (4), and a sheet (6) and framework (5) of thorium and chromate polyhedra. These structures illustrate the complexity inherent in the crystal chemistry of Th.  相似文献   

18.
Three novel polymers, {[Cd(m-bdc)(L)]·H2O}n (1), [Co(m-bdc)(L)0.5(H2O)]n (2) and [Zn5(L)2(p-bdc)5(H2O)]n (3) based on 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole (L) ligand and benzenedicarboxylate isomers, have been prepared and structurally characterized. Compound 1 exhibits a 2D architecture with (42·6)(42·67·8) topology, which is synthesized by L and 1,3-benzenedicarboxylate (m-bdc) ligands. Compound 2 is constructed from 1D chains that are linked by L ligands extending a 2D (4,4) grid. Compound 3 is a 3D framework with (43)(46·618·84) topology, which is composed of trinuclear clusters and five-coordinated metal centers joined through 1,4-benzenedicarboxylate (p-bdc) and L ligands. Moreover, the fluorescent properties of L ligand, compounds 1 and 3 are also determined.  相似文献   

19.
The reaction of sodium dimethyl(phenylsulfonyl)amidophosphate NaL (HL = C6H5SO2NHP(O)(OCH3)2) with Cu(NO3)2 · 6H2O and o-bpe (1,2-bis(pyridine-2-yl)ethane) in appropriate ratios, afford the formation of 1D coordination polymer [Cu(L)2 · o-bpe]n in good yield. The crystal structures of HL (1) and [Cu(L)2 · o-bpe]n (2) are reported. In the crystal package the molecules of 1 are linked by intermolecular hydrogen bonds formed by the phosphoryl oxygen atoms which serve as acceptors and nitrogen atoms of amide groups as donors. The crystal structure of 2 indicates the presence of unsaturated Cu(L)2 unit bridged by o-bpe ligand in the one-dimensional polymeric chain. The Cu(II) atoms have distorted 4 + 2 octahedral CuO4N2 environment formed by the oxygen atoms belonging to the sulfonyl and phosphoryl groups of two deprotonated chelate ligands and nitrogen atoms of the bridging o-bpe ligands.  相似文献   

20.
Reaction of Ln(NO3)3·6H2O with H2L [H2L=N,N′-bis(salicylidene)propane-1,2-diamine] gives rise to five new coordination polymers, viz. [Pr(H2L)(NO3)3(MeOH)]n (1) and [Ln(H2L)1.5(NO3)3]n [Ln=La (2), Eu (3), Sm (4) and Gd (5)]. Crystal structural analysis reveals that H2L effectively functions as a bridging ligand forming one-dimensional (1D) chain and two-dimensional (2D) open-framework polymers. Solid-state fluorescence spectra of 3 and 4 exhibit typical red fluorescence of Eu(III) and Sm(III) ions at room temperature while 2 emits blue fluorescence of ligand H2L. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of 5. The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号