首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of tridentate ligands N,N-bis-[(di-substituted-1-pyrazolyl)methyl]arylamines 2-3a,b and benzylamine 4a,b, tetradentate N,N′-bis-[(di-substituted-1-pyrazolyl)methyl]para-phenylenediamines 7a,b and hexadentate N,N,N′,N′-tetra-[(di-substituted-1-pyrazolyl)methyl]para-phenylenediamines 8a,b has been prepared in good yield by condensation of arylamines, benzylamine or para-phenylenediamine with N-hydroxymethyl disubstituted pyrazoles 1a,b. The synthesis and characterisation of these various polydentate ligands are described.  相似文献   

2.
The reaction of boron heterocycles 1 and 2 with n-butyl lithium and alkyl halides led to (N→B) phenyl[N-alky-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 36(ab), 7(b) and 9(b), where alkyl can be in exo and/or endo position, and phenyl[N-alkyl-N-(2-alkyl)aminodiacetate-O,O′,N]boranes 7(c) and 8(c) isomers, which do not display the intramolecular N→B coordination bond. The existence of steric interactions between N-benzyl and the alkyl group at 2 position was indicated by 1H and 13C NMR, while, the δ(11B) values confirm the tetrahedral and trigonal environment of the 11B nucleus in these compounds. Moreover, the compounds were characterized by COSY, HETCOR and homonuclear proton decoupling experiment. The study of the intramolecular N→B coordination by dynamic NMR afforded a ΔG‡ value of 81.09 kJ/mol for compound 6(b).  相似文献   

3.
The efficient and simple routes for the synthesis of various ferrocenyl derivatives from ferrocenylcarbinols and N,N′-thiocarbonyldiimidazole (TCDI) are described. It involves grinding the two substrates in a Pyrex tube with a glass rod at room temperature. The reaction of ferrocenylmethanol (1a) provided S,S-bis(ferrocenylmethyl)dithiocarbonate (1b), whose crystal structure and a plausible mechanism for its formation are also reported. The reaction of 1-ferrocenyl-1-phenylmethanol (2a) and 1-ferrocenylbutanol (2b) gave the products 2c and 2d, respectively. The reaction of ω-ferrocenyl alcohols 4-ferrocenylphenol (3a) and 6-ferrocenylhexan-1-ol (3b) yielded the products 3c and 3d, respectively. Reaction of 1,1′-ferrocenedimethanol (3e) afforded 3f in moderate yield, and by contrast, it was not similar to 1b. Reaction of [4-(trifluoromethyl)phenyl]methanol (4a) provided the thiocarbonate 4b in good yield.  相似文献   

4.
The nucleophilic conjugate addition of chiral formaldehyde N,N-dialkylhydrazones 1 to doubly activated cyclic alkenes 2-8 proceeds smoothly to afford the corresponding Michael adducts 14, 16, 18, 20, 22, 24, and 25 in variable yields and selectivities. The reactions take place either spontaneously or in the presence of MgI2 as a mild Lewis acid depending on the type of substrate. Release of the chiral auxiliary was achieved by transformation of the hydrazone moiety into acetals, dithioacetals or nitriles.  相似文献   

5.
N,N-dicyclohexyl-N-ferrocenoylurea 2, N,N-diisopropyl-N-ferrocenoylurea 3, N,N-di-p-tolyl-N-ferrocenoylurea 4 and N,N-di-tert-butyl-N-ferrocenoylurea 5 were obtained by reaction of ferrocenecarboxylic acid 1 with N,N-dicyclohexylcarbodiimide (DCC), N,N-diisopropylcarbodiimide (DIC), N,N-di-p-tolylcarbodiimide 10 and N,N-di-tert-butylcarbodiimide 11, respectively. Both N-tert-butyl-N-ethyl-N-ferrocenoylurea 6 and N-tert-butyl-N-ethyl-N-ferrocenoylurea 7 were obtained by reaction of 1 with N-tert-butyl-N-ethylcarbodiimide 12. In all cases a small amount of ferrocenecarboxylic anhydride 8 was formed as a by-product. All compounds were characterized by 1H NMR, 13C NMR, IR and MS. Single crystal X-ray structural analyses were made of 2, 3 and 4. From the consistent results, the reaction products of 1 with carbodiimides appear different from those proposed by some earlier workers. With N-(3-dimethylaminopropyl)-N-ethylcarbodiimidehydrochloride 9 ferrocenoylurea was not isolated, but the main product was rather 8. The suitability of 8 as acylation reagent was applied by using 9 to obtain N-(3-triethoxysilyl)-propylferrocenecarboxamide in a one-pot reaction from 1 and 3-(triethoxysilyl)-propylamine.  相似文献   

6.
The reaction of octafluoro-2,3-epoxybutane 1 with 2-aminothiophenol gave three kinds of novel fluorocontaining N,S-heterocyclic compounds depending on the solvent nature: 2,3-bis(trifluoromethyl)-3,4-dihydro-2H-1,4-benzothiazin-2-ol 2, 2-trifluoromethyl-2-[1-(2-aminophenylthio)-2,2,2-trifluoroethyl]-1,3-benzothiazolidine 6 and 5a,11a-bis(trifluoromethyl)-5a,6,11a,12-tetrahydro-5,11-dithia-6,12-diazanaphthacene 5. Use of the toluene, dioxane, tetrahydrofuran, acetonitrile and dimethoxyethane gave the unexpected dihydrobenzothiazine 2 (RS,SR > RR,SS) in good to moderate yields. In dimethylsulfoxide and N,N-dimethylacetamide, unusual cyclization occurred resulting in benzothiazolidine 6 (RS,SR/RR,SS ∼ 1:1) in moderate yields. Formation of minor 1,1,1,3,4,4,4-heptafluoro-3-(2-aminophenylthio)-2,2-dihydroxybutane 4 which was converted into bis(benzothiazine) 5 was observed in all solvents tested with the exception of toluene and dioxane. The molecular structure of the RS,SR-diastereomer of dihydrobenzothiazine 2, bis(benzothiazine) 5 and the RS,SR-diastereomer of benzothiazolidine 6 has been established by X-ray crystallography.  相似文献   

7.
Three unique propeller-shaped helicenyl amines compounds: N,N-diphenyl-N-naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl-amine (1), N-phenyl-N,N-di(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (2), and N,N,N-tri(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (3) were efficiently synthesized by Wittig reaction and oxidative photocyclization. The crystal structures of 1, 2 and molecular configuration optimization (DFT-B3LYP/6-31+G(d)) of 3 reveal that the steric hindrance from the moiety of trithia[5]helicene effectively forces the nitrogen atom and the three bonded carbon atoms to coplanar and the interplanar angles of the facing terminal thiophene ring and benzene ring becoming larger when the helical arm increased from 1 to 3. Electrochemical properties and UV–vis absorption behaviors of 1, 2, 3 were primarily determined by the moiety of trithia[5]helicene.  相似文献   

8.
9.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

10.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

11.
The reaction of N-(N′-methyl-2-pyrrolylmethylidene)-2-thienylmethylamine (1) with Fe2(CO)9 in refluxing toluene gives endo cyclometallated iron carbonyl complexes 2 and 5, exo cyclometallated iron carbonyl complex 3, and unexpected iron carbonyl complex 4. Complexes 2, 3, and 5 are geometric isomers. Complex 5 differs from complex 2 in the switch of the original substituent from α to β position of the pyrrolyl ring, and the pyrrolyl ring bridges to the diiron centers in μ-(3,2-η12) coordination mode in stead of μ-(2,3-η12). In complex 4, the pyrrolyl moiety of the original ligand 1 has been displaced by a thienyl group, which comes from the same ligand. Single crystals of 2, 3, and 5 were subjected to the X-ray diffraction analysis. The major product 2 undergoes: (i) thermolysis to recover the original ligand 1; (ii) reduction to form a hydrogenation product, 6, of the original ligand; (iii) substitution to form a monophosphine-substituted complex 7; (iv) chemical as well as electrochemical oxidation to produce a carbonylation product, γ-butyrolactam 8.  相似文献   

12.
EPR simulation method together with pH-potentiometry combined with UV-Vis spectrophotometry were used for the study of the ternary system 4-fuorosalicylic acid (HA)-N,N-diethylnicotinamide (B)-copper(II) in aqueous solution. The N,N-diethylnicotinamide ligand is a weak donor, its mixed-ligand complexes with 4-fluorosalicylate anions are more favoured. The number of coordinated N,N-diethylnicotinamide molecules increases with decreasing temperature: up to four ones were detected in the coordination sphere of copper(II) in frozen solutions. The formation of [CuH−1AB2] and [CuH−1A] was detected by all methods at neutral pH. At lower pH values, [CuA2B2] and [CuB] become dominant, and this fact is in good agreement with [CuA2B2(H2O)2] crystals obtained from similar solutions. The structural unit of the [CuA2B2(H2O)2] complex consists of a copper(II) ion, which is monodentately coordinated by a pair of 4-fluorosalicylate anions and by a pair of N,N-diethylnicotinamide in trans positions in the basal plane, and by two water molecules in the axial positions of a tetragonal bipyramid.  相似文献   

13.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

14.
N-Heterocyclic carbene ligands (NHC) were metalated with Pd(OAc)2 or [Ni(CH3CN)6](BF4)2 by in situ deprotonation of imidazolium salts to give the N-olefin functionalized biscarbene complexes [MX2(NHC)2] 3-7 (3: M = Pd, X = Br, NHC = 1,3-di(3-butenyl)imidazolin-2-ylidene; 4: M = Pd, X = Br, NHC = 1,3-di(4-pentenyl)imidazolin-2-ylidene; 5: M = Pd, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 6: M = Ni, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 7: M = Ni, X = I, NHC = 1-methyl-3-allylimidazolin-2-ylidene). Molecular structure determinations for 4-7 revealed that square-planar complexes with cis (5) or trans (4, 6, 7) coordination geometry at the metal center had been obtained. Reaction of nickelocene with imidazolium bromides afforded the η5-cyclopentadienyl (η5-Cp) monocarbene nickel complexes [NiBr(η5-Cp)(NHC)] 8 and 9 (8: NHC = 1-methyl-3-allylimidazolin-2-ylidene; 9: NHC = 1,3-diallylimidazolin-2-ylidene). The bromine abstraction in complexes 8 and 9 with silver tetrafluoroborate gave complexes [NiBr(η5-Cp)(η3-NHC)] 10 and 11. The X-ray structure analysis of 10 and 11 showed a trigonal-pyramidal coordination geometry at the nickel(II) center and coordination of one N-allyl substituent.  相似文献   

15.
The reaction of P4S10 (1) with N,N′-diphenylurea (PhNH)2CO (2) results in new heterocyclic compounds: the pyridinium salt of 1,3-diphenyl-2-sulfido-2-thioxo-1,3-diaza-2λ5-phosphetidine (3) (with a P–N–C–N cycle) and the pyridinium salt of 1,4-diphenyl-2,5-disulfido-2,5-dithioxo-1,4-dithiadiaza-2λ5,5λ5-diphosphinane (4), containing the (P–S–N)2 cycle and the cyclic thiophosphates [pyH]2[P2S8] (5), [pyH]2[P2S7] (6) and [pyH]3[P3S9] (7). A similar reaction, but carried out with N,N′-diphenylthiourea (PhNH)2CS (8), leads to the formation of 4 and 6. pyPS2Cl (9), used as an alternative starting material, also yields compounds 3, 4, 5, and further [pyH][PS2Cl2] (10) and S8 after reaction with 2. Compound 3 reacts with Pd(CH3COO)2, with the formation of the complex [Pd(Ph2N2COPS2)2] (11). The crystal structures of 3 and 7 were determined by single-crystal X-ray diffraction.  相似文献   

16.
Two structurally different complexes, [Cu2(2-NO2Bz)4(denia)1]n (1) and [Cu(2-NO2Bz)2(denia)2(H2O)2] (2), were prepared from the same reaction (where 2-NO2Bz = 2-nitrobenzoate, denia = N,N-diethylnicotinamide) and they are reported together with [Cu2(2-NO2Bz)4(DMF)2] (3) (DMF = N,N-dimethylformamide). The compounds under study were characterized by elemental analysis, electronic, IR and EPR spectra, magnetic measurements over the temperature range of 1.8–300 K and X-ray analysis. The molecular structure of (1) is polymeric, (2) is monomeric and (3) is dimeric. In the polymeric chain of (1), the denia molecules serve as bridges between dimeric Cu2(2-NO2bz)4 units. Each Cu(II) atom has a square-pyramidal arrangement with different chromophores, Cu1O4O′ and Cu2O4N. The Cu–Cu distances are 2.699(1) Å in the dimeric unit and 7.980(3) Å between the dimeric units. In (2) the Cu(II) atom has a tetragonal-bipyramidal environment CuO2N2O′2. In (3) two Cu(II) atoms are bridged by four carboxylate groups of four 2-NO2bz anions in a synsyn arrangement which create a square base about each Cu(II) atom and an apical position is occupied by the O atom of a DMF molecule (CuO4O′). The Cu–Cu distance of 2.633(1) Å is somewhat shorter than in (1). Spectral and magnetic data of the complexes are discussed with their structures.  相似文献   

17.
Ammonium N-ethyl-N-phenyl dithiocarbamate (L1) and N-butyl-N-phenyl dithiocarbamate (L2), and their group 12 metal complexes formulated as Zn2L14, CdL12, HgL12, Zn2L24, CdL22, HgL22 have been synthesized and characterized by elemental analyses, IR, 1H and 13C NMR spectroscopy. The crystal structures of the zinc complexes (Zn2L14 and Zn2L24) are also reported. Single crystal analyses of the two complexes revealed the presence of distorted trigonal bipyramidal and tetrahedral coordination geometry about the metal ions. The dithiocarbamate acts as bidentate chelating and bidentate bridging ligands between the metal ions giving centrosymmetric dimeric molecules. The apparent substitution of the ethyl substituents in L1 by the butyl groups in L2 results in profound change in structure.  相似文献   

18.
A new water soluble palladium(II) complex (2) derived from N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine (edteH4) (1) was synthesized in high yield and characterized by 1H, 13C, HMQC and COSY NMR spectroscopy. X-ray diffraction studies on a single crystal of 2 confirmed the cis square planar geometry; the edteH4 ligand (1) is κ2 (N,N)-coordinated with four pendant CH2CH2OH groups. This new complex [PdCl2(edteH4)] (2) and the previously synthesized triethanolamine complex [Pd(OCH2CH2N(CH2CH2OH)2)2] (3) were tested as catalysts for the Suzuki/Miyaura cross-coupling reaction of various aryl bromides with phenylboronic acid in water. Electronically activated aryl bromides, such as 4-bromoacetophenone and 4-bromobenzaldehyde undergo the cross-coupling with extremely high turnover numbers (TON) of up to 1,00,000 without organic solvent.  相似文献   

19.
We succeeded in the synthesis of N,N-dimethyl-2-trifluoroacetyl-1-naphthylamine (10) by the regioselective deacylation of N,N-dimethyl-2,4-bis(trifluoroacetyl)-1-naphthylamine with trifluoroacetic acid and water. The aromatic nucleophilic substitutions of 10 with various amines, thiols and alcohols proceeded cleanly to give the corresponding N-N, N-S and N-O exchanged products in moderate to excellent yields.  相似文献   

20.
Oxidation of N,N,N′,N′-tetrakis(diphenylphosphino)ethylendiamine (1) with elemental sulfur and selenium gives the corresponding sulfide and selenide, respectively, [(Ph2P(E))2NCH2CH2N(P(E)Ph2)2] (E: S 1a, Se 1b). Complexes of 1 [(M2Cl4){(Ph2P)2NCH2CH2N(PPh2)2}] (M: Ni(II) 1c, Pd(II) 1d, Pt(II) 1e) were prepared by the reaction of 1 with NiCl2 or [MCl2(COD)] (M = Pd, Pt). The new compounds were characterized by NMR, IR spectroscopy and elemental analysis. The catalytic activity of Pd(II) complex 1d was tested in the Suzuki coupling reaction and Heck reaction. The palladium complex 1d catalyses the Heck reaction between styrene and aryl bromides as well as Suzuki coupling reaction between phenylboronic acid and arylbromides affording stilbenes and biphenyls in high yield, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号