首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Co(II), Ni(II) and Zn(II) complexes of orotate with the N-methylimidazole ligand were synthesized and characterized by means of elemental and thermal analysis, magnetic susceptibilities, IR, UV-Vis spectroscopic and antimicrobial activity studies. The crystal structures of [Co(HOr)(H2O)2(Nmeim)2]3·H2O (1), [Ni(HOr)(H2O)2(Nmeim)2] (2) and [Zn(HOr)(H2O)(Nmeim)2] (3) were determined by the single crystal X-ray diffraction technique (H3Or = orotic acid and Nmeim = N-methylimidazole). In complexes 1 and 2, the Co(II) and Ni(II) ions have distorted octahedral geometries with two Nmeim, one orotate and two aqua ligands. Complex 3 has a distorted trigonal bipyramidal geometry with two N-methylimidazole, one orotate and one aqua ligands. In the complexes, the orotate is coordinated to the metal(II) ions through the deprotonated nitrogen atom of the pyrimidine ring and the oxygen atom of the carboxylate group as a bidentate ligand. The complexes form a three-dimensional framework by hydrogen bonding, C-H?π and π?π stacking interactions. The MIC values of the complexes against selected microorganisms were determined to be in range 300-2400 μg/mL.  相似文献   

2.
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)2 (L = L1 [N1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L2 [N1-pyridine-2-ylmethylene-propane-1,3-diamine] for complex 2 or L3 [N1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)2 (L = L4 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L5 [N,N′-bis(pyridine-2-ylmethyline)-propane-1,3-diamine] for complex 5 or L6 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, 1 and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry.  相似文献   

3.
New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O-H?O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20-300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner-Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner-Fisher approximation gave the following result for compound 2: g=2.18, J=-0.4 cm−1.  相似文献   

4.
Treatment of [Cp′MH(CO)3] (M = Mo, W; Cp′ = η5-C5H5 (Cp), η5-C5Me5 (Cp*)) with 1/8 equiv of S8 in THF, followed by the reaction with dppe under UV irradiation, gave new mono(hydrosulfido) complexes [Cp′M(SH)(CO)(dppe)] (Cp′ = Cp: M = Mo (5), W (6); Cp′ = Cp*: M = Mo (7), W (8); dppe = Ph2PCH2CH2PPh2). When 5 and 6 dissolved in THF were allowed to react with [RhCl(PPh3)3] in the presence of base, heterodinuclear complexes with bridging S and dppe ligands [CpM(CO)(μ-S)(μ-dppe)Rh(PPh3)] (M = Mo (9), W(10)) were obtained. Semi-bridging feature of the CO ligands were also demonstrated. Upon standing in CH2Cl2 solutions, 9 and 10 were converted further to the dimerization products [(CpM)2{Rh(dppe)}22-CO)23-S)2] (M = Mo (13), W). Detailed structures of mononuclear 7 and 8, dinuclear 9 and tetranuclear 13 have been determined by the X-ray diffraction.  相似文献   

5.
Reactions of [Ni(L)]Cl2 · 2H2O (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with isophthalic acid (H2isoph) and 1,3,5-cyclohexanetricarboxylic acid (H3chtc) yield the 1D nickel(II) complexes {[Ni(L)(isoph)] · 3H2O}n (1) and {[Ni(L)(H-chtc)] · H2O}n (2). The structures were characterized by X-ray crystallography, spectroscopic and magnetic susceptibility. The crystal structures of the 1D chain compounds 1 and 2 show an elongated distorted octahedron about each nickel(II) ion. The magnetic behavior of two compounds exhibits weak intrachain antiferromagnetic interaction with J values of −0.93 cm−1 for 1 and −1.28 cm−1 for 2. The electronic spectra of the complexes are significantly affected by the nature of the carboxylate ligands.  相似文献   

6.
The rare earth metal isoindolinates Ln(iPrL)3 (Ln = Sc (1), Y (2), Eu (3), Dy (4), Yb (5); iPrL = 1,3-bis(isopropylimino)isoindolinate anion) and [(MeL)Ce]2(μ-MeL)4 (6) (MeL = 1,3-bis(methylimino)isoindolinate anion) were synthesized by reactions of the amides Ln[N(SiMe3)2]3 with 1,3-bis(isopropylimino)isoindoline (iPrLH) or 1,3-bis(methylimino)isoindoline (MeLH), respectively. The X-ray diffraction study revealed that in monomeric molecules of the isopropyl-substituted compounds 2 and 4 the cations Ln3+ are η2-coordinated by three isoindolinate ligands. The methyl-substituted 6 exists in a crystal as a dimer containing two terminal η2-coordinated ligands and four bridging isoindolinate ligands two of which are bonded to Ce atoms in η3 fashion (η:η:η-N,N,N) but two others in η4 manner (η:η2:η-N,N,N). All the obtained complexes in solutions exhibited ligand-centered photoluminescence, the spectra of which consist of one broadened band with a maximum at 400–450 nm.  相似文献   

7.
Two novel Ni(II) complexes {[Ni(en)2(pot)2]0.5CHCl3} (3) {pot = 5-phenyl-1,3,4-oxadiazole-2-thione} (1) and [Ni(en)2](3-pytol)2 (4) {3-pytol = 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol} (2) have been synthesized using en as coligand. The metal complexes have been characterized by physical and analytical techniques and also by single crystal X-ray studies. The complexes 3 and 4 crystallize in monoclinic system with space group P21/a and P121/c, respectively. The complex 3 has a slightly distorted octahedral geometry with trans (pot) ligands while 4 has a square planar geometry around the centrosymmetric Ni(II) center with ionically linked trans (3-pytol) ligands. The π?π (face to face) interaction plays an important role along with hydrogen bondings to form supramolecular architecture in both complexes.  相似文献   

8.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

9.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

10.
In an effort to find simple and common single-source precursors for palladium sulfide nanostructures, palladium(II) complexes, [Pd(S2X)2] (X = COMe (1), COiPr (2)) and η3-allylpalladium complexes with xanthate ligands, [(η3-CH2C(CH3)CR2)Pd(S2X)] (R = H, X = COMe (3); R = H, X = COEt (4); R = H, X = COiPr (5); R = CH3, X = COMe (6)), have been investigated. The crystal structures of [Pd(S2X)2] (X = COMe (1), CoiPr (2)) and [(η3-CH2C(CH3)CH2)Pd(S2COMe)] (3) have been established by single crystal X-ray diffraction analysis. The complexes, 1, 2 and 3 all contain a square planar palladium(II) centre. In the allyl complex 3, this is defined by the two sulfurs of the xanthate and the outer carbons of the 2-methylallyl ligand, while in the complexes, 1 and 2 it is defined by the four sulfur atoms of the xanthate ligand. Thermogravimetric studies have been carried out to evaluate the thermal stability of η3-allylpalladium(II) analogues. The complexes are useful precursors for the growth of nanocrystals of PdS either by furnace decomposition or solvothermolysis in dioctyl ether. The solvothermal decomposition of complexes in dioctyl ether gives a new metastable phase of PdS which can be transformed to the more stable tetragonal phase at 320 °C. The nanocrystals obtained have been characterized by PXRD, SEM, TEM and EDX.  相似文献   

11.
The syntheses and characterization of two novel ferrocene derivatives containing 3,5-diphenylpyrazole units of general formula [1-R-3,5-Ph2-(C3N2)-CH2-Fc] {Fc = (η5-C5H5)Fe(η5-C5H4) and R = H (2) or Me (3)} together with a study of their reactivity with palladium(II) and platinum(II) salts or complexes under different experimental conditions is described. These studies have allowed us to isolate and characterize trans-[Pd{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}2Cl2] (4a) and three different types of heterodimetallic complexes: cis-[M{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] {M = Pd (5a) or Pt (5b)}, the cyclometallated products [M{κ2-C,N-[3-(C6H4)-1-Me-5-Ph-(C3N2)]-CH2-Fc}Cl(L)] with L = PPh3 and M = Pd (6a) or Pt (6b) or L = dmso and M = Pt (8b) and the trans-isomer of [Pt{1-Me-3,5-Ph2-(C3N2)-CH2-Fc]}Cl2(dmso)] (7b). In compounds 4a, 5a, 5b and 7b, the ligand behaves as a neutral N-donor group; while in 6a, 6b and 8b it acts as a bidentate [C(sp2,phenyl),N(pyrazole)] group. A comparative study of the spectroscopic properties of the compounds, based on NMR, IR and UV-Visible experiments, is also reported.  相似文献   

12.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

13.
Ruthenium complexes with bipyridine-analogous quaternized (N,C) bidentate ligands [RuL(bpy)2](PF6)2 (bpy = 2,2′-bipyridine, (1), L = L1 = N′-methyl-2,4′-bipyridinium; (2), L = L2 = N′-methyl-2,3′-bipyridinium) were synthesized and characterized. The structure of complex 2 was determined by the X-ray structure analysis. The 13C{1H} NMR spectroscopic and cyclic voltammetric studies indicate that the coordination modes of these ligands are quite different, that is, the C-coordinated rings of (N,C)-ligands in 1 and 2 are linked to ruthenium(II) with a pyridinium manner and a pyridinylidene one, respectively. The ligand-localized redox potentials of 1 and 2 also revealed the substantial difference in the electron donating ability of both ligands.  相似文献   

14.
The synthesis, structure, spectroscopic and electro-spectrochemical properties of sterically constrained Schiff-base ligands (LnH) (n = 1, 2, and 3) (L = N-[m-(methylmercapto)aniline]-3,5-di-t-butylsalicylaldimine, m = 4, 3, and 2 positions, respectively) and their copper(II) complexes [Cu(Ln)2] are described. Three new dissymmetric bidentate salicylaldimine ligands containing a donor set of ONNO were prepared by reaction of different primary amine with 3,5-di-t-butyl-2-hydroxybenzaldehyde (3,5-DTB). The copper(II) metal complexes of these ligands were synthesized by treating an methanolic solution of the appropriate ligand with an equimolar amount of Cu(Ac)2 · H2O. The ligands and their copper complexes were characterized by FT-IR, UV–Vis, 1H and 13C NMR and elemental analysis methods in addition to magnetic susceptibility, molar conductivity, and spectroelectrochemical techniques. Analytical data reveal that copper(II) metal complexes possess 1:2 metal–ligand ratios. On the basis of molar conductance, the copper(II) metal complexes could be formulated as [Cu(Ln)2] due to their non-electrolytic nature in dimethylforamide (DMF). The room temperature magnetic moments of [Cu(Ln)2] complexes are in the range of 1.82–1.90 B.M which are typical for mononuclear of Cu(II) compounds with a S = 1/2 spin state. The complexes did not indicate antiferromagnetic coupling of spin at this temperature. Electrochemical and thin-layer spectroelectrochemical studies of the ligands and complexes were comparatively studied in the same experimental conditions. The results revealed that all ligands displayed irreversible reduction processes and the cathodic peak potential values of (L3H) are shifted towards negative potential values compared to those of (L1H) and (L2H). It is attributed to the weak-electron-donating methyl sulfanyl group substituted on the ortho (m = 2) position of benzene ring. Additionally, all copper complexes showed one quasi-reversible one-electron reduction process in the scan rates of 0.025–0.50 V s−1, which are assigned to simple metal-based one-electron processes; [Cu(2+)(Ln)2] + e → [Cu(1+)(Ln)2]. The spectral changes corresponding to the ligands and complexes during the applied potential in a thin-layer cell confirmed the ligand and metal-based reduction processes, respectively.  相似文献   

15.
Synthetic, structural and catalysis studies of Ni(II) and Cu(II) complexes of a series of phenoxy-ketimine ligands with controlled variations of sterics, namely 2-[1-(2,6-diethylphenylimino)ethyl]phenol (1a), 2-[1-(2,6-dimethylphenylimino)ethyl]phenol (1b) and 2-[1-(2-methylphenylimino)ethyl]phenol (1c), are reported. Specifically, the ligands 1a, 1b and 1c were synthesized by the TiCl4 mediated condensation reactions of the respective anilines with o-hydroxyacetophenone in 21–23% yield. The nickel complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Ni(II) (2a) and {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Ni(II) (2b), were synthesized by the reaction of the respective ligands 1a and 1b with Ni(OAc)2 · 4H2O in the presence of NEt3 as a base in 71–75% yield. The copper complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Cu(II) (3a), {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Cu(II) (3b) and {2-[1-(2-methylphenylimino)ethyl]phenoxy}2Cu(II) (3c) were synthesized analogously by the reactions of the ligands 1a, 1b and 1c with Cu(OAc)2 · H2O in 70–87% yield. The molecular structures of the nickel and copper complexes 2a, 2b, 3a, 3b and 3c have been determined by X-ray diffraction studies. Structural comparisons revealed that the nickel centers in 2a and 2b are in square planar geometries while the geometry around the copper varied from being square planar in 3a and 3c to distorted square planar in 3b. The catalysis studies revealed that while the copper complexes 3a, 3b and 3c efficiently catalyze ring-opening polymerization (ROP) of l-lactide at elevated temperatures under solvent-free melt conditions, producing polylactide polymers of moderate molecular weights with narrow molecular weight distributions, the nickel counterparts 2a and 2b failed to yield the polylactide polymer.  相似文献   

16.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

17.
18.
Five new mixed ligand coper(II) complexes, viz. [Cu(SAA)(H2O)] (1), [Cu(SAA)(MeImH)] (2), [Cu(SAA)(EtImH)] (3), [Cu(SAA)(BenzImH)] (4) and [Cu(SAA)(MebenzImH)] (5), where SAA = salicylideneanthranilic acid, MeImH = 2-methylimidazole, EtImH = 2-ethylimidazole, BenzImH = benzimidazole, MebenzImH = 2-methylbenzimidazole, have been synthesized and characterized by means of elemental analysis, FAB mass spectrometry, magnetic susceptibility, X-band EPR, electronic spectroscopy, IR and cyclic voltammetry. The frozen solution EPR spectra of the complexes have shown axial features. Single crystal X-ray analysis of 2 and 3 has revealed the presence of a distorted square planar geometry (N2O2) in the complexes. The superoxide dismutase (SOD) activity of the present complexes has also been measured and discussed.  相似文献   

19.
A series of new HgI2 organic polymeric complexes, [Hg2(L1)I4]n (1), [Hg(L2)I2]n (2), [Hg(L3)I2]n (3), [Hg2(L4)I4]n (4), [Hg(L5)I2]n (5), [Hg(L6)I3](HL6) (6) {L1 = 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene, L2 = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, L3 = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, L4 = 2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene, L5 = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and L6 = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene} was prepared from reactions of mercury(II) iodide with six organic nitrogen donor-based ligands under thermal gradient conditions using the branched tube method. All these compounds were structurally characterized by single-crystal X-ray diffraction. The HgI2 coordination polymers obtained with the ligands L2, L3 and L5 show one-dimensional zig-zag motifs and in these compounds the HgI2 units are connected to each other by the ligands L2, L3 and L5 through the pyridyl nitrogen atoms. The L1 and L4 ligands in the compounds 1 and 4 act as both a chelating and bridging group. In the compound 6 the ligand L6 acts as a monodentate ligand, resulting form a discrete compound. The thermal stabilities of compounds 16 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

20.
Three novel metal-organic frameworks [M(1,3-BDC)(Dpdq)(H2O)m] · nH2O, (M = CoII (1), CdII (2) or ZnII (3); m = 0, 1; n = 0, 1, 2, respectively) have been obtained from hydrothermal reactions of three different metal(II) nitrates with the same mixed ligands [isophthalic acid (1,3-BDC) and 2,3-di-2-pyridylquinoxaline (Dpdq)], and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Single-crystal X-ray analyses show that each pair of metal ions are bridged by various coordination modes of 1,3-BDC ligands to form left- and right-handed helical chains in 1, linear chains in 2, and double chains in 3, respectively. N-containing flexible ligand Dpdq takes a chelating coordination mode acting as terminal ligand. In the compound 1, adjacent left- and right-handed helical chains are packed through hydrogen bonds to form a two-dimensional (2-D) structure. In the compounds 2 and 3, adjacent chains are further linked by hydrogen bonds and/or π-π stacking interactions to form a three-dimensional (3-D) distorted hexagon meshes supramolecular framework for 2 and a ZnS-related three-dimensional (3-D) topology for 3, respectively. The different structures of compounds 1-3 illustrate that the influence of the metal ions in the self-assembly of polymeric coordination architectures. In addition, compounds 2 and 3 exhibit blue emission in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号